Constraining dark energy

V.Ruhlmann-Kleider CEA/Irfu/DPhP - Saclay

1) State of the art, Type Ia supernovae (SNe Ia)

2) Baryonic acoustic oscillations (BAO) and beyond (RSD)3) Weak lensing (WL)

4) The H_0 tension

Weak lensing

- 1. Weak gravitational lensing, a brief introduction
- 2. Results
- 3. Prospects: Euclid, LSST, WFIRST

Method

Weak gravitational lensing

Gravitational lensing: bending of light by mass along the line of sight to an observed source ⇒ distorted image of the source

strong & weak lensing due to cluster Abell 2218

Weak lensing ≡ gravitational lensing by large scale structures
 ⇒ distorted (= sheared) images of distant galaxies
 ⇒ 3D distribution of total matter (dark + luminous)
 ⇒ probe of geometry and structure

Shear and convergence

 Image distortion modelling: mapping between source (S) and image (I) planes:

$$\delta \mathbf{x}_{i}^{s} = \mathbf{A}_{ij} \delta \mathbf{x}_{j}^{I}$$
 $\delta \mathbf{x} \equiv \text{separation vector}$

with:

$$\mathbf{4} = \begin{pmatrix} 1 - \kappa - \gamma_1 & -\gamma_2 \\ -\gamma_2 & 1 - \kappa + \gamma_1 \end{pmatrix}$$

distortion matrix

- κ : convergence \rightarrow isotropic magnification
- (γ₁, γ₂) : two-component shear → anisotropic stretch
 |γ|=√γ₁²+γ₂² : total shear weak lensing limit: κ,|γ|≪1

• source magnification :
$$\mu = \frac{1}{|1-\kappa|^2 - |\gamma|^2} \approx 1 + 2\kappa + \mathcal{O}(\kappa^2, \gamma^2)$$

Cosmic shear field

- $\kappa, |\gamma| \le O(few \%) \Rightarrow$ images weakly lensed \Rightarrow statistical measurement on a large number (at least a few hundreds) of distant galaxies
- Cosmic shear = statistical signal due to weak lensing

cosmic shear field (white) compared with mass distribution (over/underdense regions = bright/dark) (N-body simulation)

Principal statistics: angular power spectrum & 2-point correlation function

Shear/convergence angular power spectrum

For source galaxies at z_s:

 $P_m(k,z)$: matter power spectrum W(z): efficiency for lensing galaxies

- WL probes both geometry and growth of structure
- WL radially projects density fluctuations
- more from : shear correlations between objects in different redshift bins (WL tomography)
 → f(z), w(z)

Sensitivity to cosmology parameters

- Projection along l.o.s : many features smeared out (e.g. BAO) ⇒loss of sensitivity
- P'_{κ} most sensitive to:

 $\sigma_8 \Omega_m^{\alpha}, \ \alpha \approx 0.2 - 0.7$

 σ_8 matter power spectrum normalization today $\alpha \approx 0.25$ CMB, 0.5 at low z

Shear correlation function

- Galaxy shape measurements \Rightarrow galaxy ellipticities \Rightarrow 2PCF
- 2 component shear
 ⇒ 2 component CF

 $\begin{aligned} \xi_{+}(\vartheta) &= <\gamma_{t}\gamma_{t} > (\vartheta) + <\gamma_{x}\gamma_{x} > (\vartheta) \\ \xi_{-}(\vartheta) &= <\gamma_{t}\gamma_{t} > (\vartheta) - <\gamma_{x}\gamma_{x} > (\vartheta) \end{aligned}$

 ϑ : angular separation

NB: $\xi_{+}(\vartheta)=2PCF(\kappa)$ NB: several derived 2nd order statistics exist

M.Kilbinger, 2015, Rep. Prog. Phys, 78, 086901

Requirements for precise measurements

$$\Delta \boldsymbol{P}_{\kappa}^{\ell} = \sqrt{\frac{2}{(2l+1)\boldsymbol{f}_{sky}}} \begin{bmatrix} \boldsymbol{P}_{\kappa}^{\ell} + \frac{\boldsymbol{\sigma}^{2}(\boldsymbol{\gamma}_{i})}{\boldsymbol{n}_{eff}} \end{bmatrix}$$

f_{sky} survey area

cosmic variance

- σ_{y} std dev in a single component shear (~ 0.2 typical)
- n_{eff} effective number density of galaxies with well measured shapes
- ⇒ wide & deep survey, galaxy shape measurements with modest precision on individual galaxies but unbiased for the galaxy sample (currently 1% accuracy → 0.1%)
- Large samples means photometric redshifts for source galaxies

Systematics

- Observational systematics for shape measurements: PSF varies with atmospheric blurring, telescope distortions, CCD nonflatness and misalignment on the focal plane, pixelation...
 - ⇒ bias calibration with a large and representative sample of observed and simulated galaxie, hence deep observations & image simulations
- Limited precision of photometric redshifts: bias < 0.1%, resolution $\sigma_z/(1+z)\approx 3\%$, outlier rate < 10% (<1% tomography) ⇒ large spectroscopic sample for calibration (10⁴→10⁵)
- Interpretation: predictions deeply in the non-linear regime (⇒N-body simulations) + non-Gaussian errors at small scale
- Modelling of intrinsic alignment of galaxy shapes (on their surrounding grav. potentials) ⇒astrophysics input

Precursors, 2000-2013

• CFHTLens (2003/2008), 170deg², ugriz, 5 σ depth \approx 25.5 i_{AB}, 17 gal. arcmin⁻² + photo-z's from CFHTLS deep fields: $\sigma_z/(1+z)\sim4\%$ & outlier rate~4% in 0.2<z < 1.3 \rightarrow n(z_s) estimate

Ongoing surveys, since 2013

Project	deg ²	sources	N/arcmin ²	r lim	Zs	filters	aim deg²
DES-Y1 (2013, 5yrs)	1,321	26 10 ⁶	5.14	23.2 (10σ)	0.2/1.3	grizY	5,000
HSC-Y1 (2014, 6yrs)	137	9 10 ⁶	16.5	26 (5σ)	0.3/1.5	grizY	1,400
KV-450 (2015)	450	12 106	6.85	25.2 (5σ)	0.1/1.2	ugri+NIR	1,300

 DES-Y1: multi-probe survey : shear tomography (4 bins) + galaxy clustering and their cross-correlation (650,000 lenses)

 \rightarrow combination of probes within the same survey

- HSC-Y1: shear tomography (4 bins) from the wide HSC survey
- KiDsViking-450: shear tomography survey (5 bins)
 → accurate photometric redshift calibration

T.M.C.Abbott et al, 2018, Phys. Rev. D98, 043526

- Three probes combined: $\xi_{\pm}(\vartheta)$ 2PCF of source galaxy ellipticities
 - $w(\vartheta)$ angular 2PCF of lens galaxies
 - $\gamma_t(\vartheta)$ tangential shear of sources x lens galaxy positions (so-called galaxy-galaxy lensing)

- Combination:
- self-calibrates some WL systematics (e.g. intrinsic alignment, photometric redshift uncertainties...)
- solves for galaxy bias

DES-Y1: one of the two shear measurements

 Source sample distributed in 4 photo-z bins, low scales excluded (to reduce uncertainties in modelling intrinsic alignment and baryonic effects)

DES-Y1: clustering measurements

Lens sample distributed in 5 photo-z bins, low scales excluded (because of modelling uncertainties in the non-linear regime)

- Lensing from DES (& other WL surveys) agree with CMB lensing.
- Mild tension (2σ) between lensing and Planck T&E constraints: can Λ_{CDM} reconcile measurements of high redshift (linear) perturbations and low redshift (non linear) clustering ?
- Same trend with cluster data. More (precise) data needed for a conclusive evidence.

- 9 band imaging (optical+NIR)
- \Rightarrow robust source photo-z calibration
- \Rightarrow no hint of residual systematics
- 2.3σ discrepancy with Planck-2018
- S₈ increase with calibration based on COSMOS-15 photo-z ctlg: artificial (outliers)? Could impact DES & HSC

H.Hildebrandt et al, arXiv:1812.06076

17

WL Summary

- weak lensing probes total matter distribution (so no need for a bias model) ⇒ constrains geometry & growth rate
- tiny signal means tight constraints on survey design & analysis to control systematics (PSF control, unbiased photometric redshifts, nonlinear predictions, mitigation of residual systematic effects....)
 systematics in shear measurements & photo-z bias must be < 1%
- many observables & statistics (shear & convergence, 2-pt statistics and derived functions, tomography, shear peak counts, higher order stat.)
- combination with clustering and galaxy-galaxy lensing : very helpful to constrain part of WL systematics (self-calibration)
- current status:
 - uncertainty on S_8 : stat \geq syst
 - mild (2σ) tension between WL and CMB data (without lensing)
 - WL does not add much yet to current dark energy constraints

Prospects

Euclid

- 1.2 m mirror
- ~0.53 deg² FoV
- VIS: visual imager, 540 Megapixels
 - 0.55-0.9 µm, 1 broad R+I+Z band
- NISP: NIR photometry
 - 0.92-2.0 µm YJH bands and slitless spectroscopy
 - 0.92-1.85 µm (R=380)
- satellite, L2
- Launch 2022, 6yrs
- 15,000 deg², a billion galaxies

Euclid: an instrument/survey optimised for WL and BAO/RSD (with additional (u)griz data from the ground : PanSTARRS, DES, KiDs.....)

Weak lensing and BAO/RSD with Euclid

- Euclid WIDE survey: 15,000 deg² (baseline, goal 20,000 deg²)
- WL: imaging survey
 - a billion shape measurements up to z=2 : VIS photometry (100 extended source) depth RIZ_{AB}≈24.5, source density 30 arcmin⁻²
 - source galaxy photo-z's: σ_z/(1+z)≤5%, <10% outliers, bias<2 10⁻³ NISP photometry: (5σ point source) depth in Y, J, H_{AB}≈24
 +griz photometry from the ground (DES, KiDs, Pan-STARRS, LSST...).
 photo-z calibration : 10⁵ accurate spectroscopic redshifts required →NISP spectroscopy in deep fields + existing catalogs from the ground (SDSS, VVDS, zCOSMOS, DEEP2, VIPERS, VIMOS)
- BAO/RSD: spectroscopic survey (NISP spectroscopy), 50 million redshifts (Ha emission line galaxies), 0.7 < z < 2.1.
- Euclid DEEP survey (2 mag deeper, 2x>10deg²): slitless calibration spectroscopy for WL photo-z's (in 0.7<z<2.0), stability monitoring, control of the wide survey radial selection function...

Euclid vs DESI forecast on clustering (RSD)

R.Laureijs et al, Euclid Definition Study Report, arXiv:1110.3193 similar precision extended redshift coverage (DESI z<0.7, Euclid z>1.5)

Euclid forecast on weak lensing

R.Laureijs et al, Euclid Definition Study Report, arXiv:1110.3193

 expected shear spectrum recovered to better than 1% over all signal-dominated scales (I<<2,000), higher resolution simulation required to get realistic prospects at smaller scales.

Weak lensing with LSST

- LSST main survey: Wide-Fast-Deep survey
 - 18,000 deg²
 - imaging 5 σ point-source depth r_{AB}~ 27.5, source density 48 arcmin⁻²
 - 2 billion galaxy shape measurements
 - photometric redshifts with $\sigma_z/(1+z)\sim0.3\%$, bias<10⁻³(1+z)

LSST Dark Energy Science Collaboration, arXiv:1809.01669

Z.Ivezic et al, arXiv:0805.2366v5 (May 2018)depthangular resolution

LSST will go **3mag** deeper (after coadd)

a lensed QSO (20x20 2" images) 24

WFIRST forecast (see L2): same kind of joint analysis Euclid forecast (slide 23): galaxy-shear NOT included in combination (yet)

Weak lensing with WFIRST

 WFIRST High Latitude imaging survey (2yrs spread over 5yrs):
 2,000 deg², imaging & grism spectroscopy for photo-z calibration, (5σ point source) depth Y,J,H,F_{AB}≤27, source density in coadded images 50 arcmin⁻², 3.6 10⁸ shape measurements, σ_z/(1+z)~4% Strong point: well-controlled systematics (high angular precision, photometric stability, low readout noise, coverage uniformity...)

O. Doré et al, Astro2020 science white paper, arXiv:1904.011174

CONCLUSIONS

- weak lensing probes total matter distribution and imposes tight constraints on survey design & analysis to control systematics, esp. PSF control and calibration of source galaxy photo-z's.
- part of WL systematics can be self-calibrated via WL combination with clustering and galaxy-alaxy lensing.
- Prospects:
 - wide, dense, precise WL surveys are coming: Euclid, LSST, WFIRST
 - will all require external data to get reliable photo-z's:
 - multi-band imaging for photo-z determination
 - Iarge sample of accurate spectra for photo-z algorithm training
 - Iarge sample of accurate spectro-z's for photo-z error characterization
 - ⇒ collaboration with existing/future ground-based surveys collaboration between Euclid, LSST, WFIRST proposals for new multi-object spectroscopy projects

Euclid, LSST, WFIRST

Joint work: beneficial also for galaxy deblending, calibration of shear estimates, color-dependent PSF, residual shear systematics.... (& for other goals e.g. SNe, clusters, strong lensing ...)
 Similar statistical performance, different systematic uncertainty levels ⇒ combination

R.R.Chary et al, arXiv:1901.1259

B.Jain et al, arXiv:1501.07897

Back up slides

DES-Y1: one of the two shear measurements

 Clustering data dominate intrinsic alignment parameter constraints and have a significant weight in the other constraints.

DES-Y1 joint analysis, impact of $\Sigma m_{\!\nu}$

- DES-Y1 analyses:
 Σm_ν marginalized over
- Planck Λ_{CDM} analysis: $\Sigma m_v = 0.06 eV$

T.M.C.Abbott et al, 2018, Phys. Rev. D98, 043526 33

Planck-2018 vs DES Y1

Planck Collab., arXiv:1807.06209

KIDS-VIKING-450

arXiv:1812.060.

Hildebrana

Table 1. Spectroscopic redshift surveys used for the calibration of KV450 photo-*z*.

Survey	Area	No. of	z-max	<i>r</i> _{lim}	Used for
	[deg ²]	spec-z			
SDSS*	119.2	15564	0.7		CC/OQE
GAMA*	75.9	79756	0.4	19.8	CC/OQE
2dFLenS*	61.2	3914	0.8		CC/OQE
WiggleZ*	60.1	19968	1.1		CC/OQE
zCOSMOS	0.7	9930	1.0	24	CC/DIR
DEEP2	0.8	6919	1.5	24.5	CC/DIR
VVDS*	1.0	4688	1.3	25	CC/DIR
G15Deep*	1.0	1792	0.7	22	DIR
CDFS	0.1	2044	1.4	25	DIR

Enlarged sample of spectroscopic redshifts ⇒ reduced shot noise and sample variance in source photo-z calibration

KIDS-VIKING-450

Table 5. Setups for further MCMC test runs.

no.	Setup	Difference w.r.t. fiducial setup
1	sDIR	sDIR (smoothed version of DIR) $n(z)$
2	DIR-w/o-COSMOS	DIR $n(z)$ based on all spec-z except COSMOS
3	DIR-w/o-COSMOS&VVDS	DIR $n(z)$ based on all spec-z except COSMOS and VVDS
4	DIR-w/o-VVDS	DIR $n(z)$ based on all spec-z except VVDS
5	DIR-w/o-DEEP2	DIR $n(z)$ based on all spec-z except DEEP2
6	DIR-C15	DIR $n(z)$ based on the COSMOS-2015 photo-z
7	CC-fit	n(z) from GMM fit to small-scale clustering-z (CC; App. C.2)
8	CC-shift	DIR $n(z)$ shifted to best fit CC measurements
9	OQE-shift	DIR $n(z)$ shifted to best fit large-scale clustering-z (OQE; App. C.3)
10	no-deltaz	redshift uncertainty switched off, i.e. $\delta z_i = 0$
11	IA-Gauss	informative Gaussian prior on A_{IA}
12	IA-linear-PS	using the linear power spectrum in Eqs. 9
13	IA-z-evolution	allowing for redshift evolution in the IA model
14	no-baryons	baryon feedback switched off, i.e. $B = 3.13$
15	wide-baryons	wide prior on baryon feedback, $B \in [1.4, 4.8], \eta_0 \in [0.4, 0.9]$
16	no-systematics	no marginalisation over nuisance parameters, no error on m
17	no-systematics_merr	same as 16 but including a $\sigma_m = 0.02$ uncertainty in the <i>m</i> -bias
18	all-xip	all scales 0.5 < θ < 300' used for ξ_+
19	nu0	massless neutrinos
20	nu0p26	one massive neutrino with $m = 0.26$ eV and two massless neutrinos
21	no-bin1	using tomographic bins 2, 3, 4, and 5 only
22	no-bin2	using tomographic bins 1, 3, 4, and 5 only
23	no-bin3	using tomographic bins 1, 2, 4, and 5 only
24	no-bin4	using tomographic bins 1, 2, 3, and 5 only
25	no-bin5	using tomographic bins 1, 2, 3, and 4 only
26	iterative-covariance	analytical covariance based on the best-fit fiducial cosmology

