Nonlinear Perturbation Theory for the Large Scale Structure

M. Pietroni - INFN, Padova XIII Tonale Winter School on Cosmology, 9-13 Dec. 2019

Lecture 2

Outline

- brief review of statistical field theory

- the setup: Eulerian vs Lagrangian, equations of motion
- structure formation in the LineLand (1+1 dimensions)
- Standard Perturbation Theory
- performance and problems of SPT (response functions)
- IR effects: resummations and BAO's
- UV behavior: Effective approaches
- From matter to biased tracers
- Redshift space distortions
- Putting all together (state of the art)
- Beyond PT: consistency relations
- Beyond PT: shell-crossing
- [Beyond CDM: Axions and ALP's]
- [Beyond LCDM: neutrinos, PNG, non-standard growth and mode-coupling]

References:

Structure formation in the LineLand (1+1 dim)

- Force is independent on distance
- Linear (Zel'dovich) approximation and PT valid up to shell-crossing
- Clear isolation of shell-crossing effects

(Mc Quinn, White, 1502.07389; Taruya, Colombi, 1701.09088; Rampf, Frisch, 1705.08456; McDonald, Vlah, 1709.02834, Pajer, van der Woude, 1710.01736, MP 1804.09140, Rampf et al 1912.00868...)

LAGRANGIAN TO EULERIAN MAPPING

$$f(x, p, \tau) = \bar{\rho} \int dq \,\delta_D \left(q + \psi(q, \tau) - x \right) \,\delta_D \left(p - am \dot{\psi}(q, \tau) \right)$$

$$\frac{1}{\bar{\rho}} \int dp f(x, p, \tau) = 1 + \delta(x, \tau) = \int dq \, \delta_D(q + \psi(q, \tau) - x) = \sum_{\text{roots}} \frac{1}{|1 + \psi'(q_i, \tau)|}$$
roots: $q_i(x, \tau)$ such that $q_i + \psi(q_i, \tau) = x$

$$(\psi'(q) \equiv \partial_q \psi(q))$$

Case a): only one root in x (one stream)

Case b): three roots in x (three streams)

$$\begin{array}{c} b) & x & x(q,\tau) \\ \hline & & & \\ \hline \hline & & & \\ \hline & & & \\ \hline \hline & &$$

• non-zero velocity dispersion: three streams

Equation of motion

 $\ddot{\psi}(q) + \mathcal{H}\dot{\psi}(q) = -\partial_x\phi(x(q))$ $(x(q) = q + \psi(q))$

$$\mathsf{EdS:}\,\Omega_m = 1 \qquad \partial_x^2 \phi(x) = \frac{3}{2}\mathcal{H}^2 \delta(x) = \frac{3}{2}\mathcal{H}^2 \int dq' \left(\delta_D(q' + \psi(q') - x) - \delta_D(q' - x)\right)$$

Exact force: $-\partial_x \phi(x) = \frac{3}{2} \mathcal{H}^2 \int dq' \; (\Theta(q' + \psi(q') - x) - \Theta(q' - x)) = \frac{3}{2} \mathcal{H}^2 \sum_i (-1)^{i+1} \psi(q_i(x))$

$$a) \qquad x \qquad x(q,\tau)$$
$$\ddot{\psi}(q) + \mathcal{H}\dot{\psi}(q) = \frac{3}{2}\mathcal{H}^2 \sum_{i} (-1)^{i+1} \psi(q_i(x(q)))$$
$$q_1(\bar{x}) \qquad q$$

Single stream regime
only one root:
$$q_1(x(q)) = q$$
 \overleftrightarrow $\ddot{\psi}(q) + \mathcal{H}\dot{\psi}(q) = \frac{3}{2}\mathcal{H}^2\psi(q)$

Zel'dovich dynamics is exact in single stream regime (only in 1+1)

solution (growing mode):
$$\psi_Z(q,\tau) = a(\tau)\psi_Z(q,\tau_0)$$
 $(a(\tau_0) = 1)$

q=0 fixed (always possible by a time-dependent boost): $\delta_Z(0,\tau) = -\frac{\psi'_Z(0,\tau)}{1+\psi'_Z(0,\tau)}$

Perturbation Theory expansion: $\psi'_Z(0,\tau) \equiv -\delta_{\rm lin}(0,\tau) = -a(\tau)\delta_{\rm lin,0}$

$$\delta_{\rm SPT}(0,\tau) = \sum_{n=1}^{\infty} a(\tau)^n \delta_{\rm lin,0}^n$$

Convergence of SPT

$$\delta_{\rm SPT}(0,\tau) = \sum_{n=1}^{\infty} a(\tau)^n \delta_{\rm lin,0}^n \xrightarrow{?} \frac{a(\tau)\delta_{\rm lin,0}}{1 - a(\tau)\delta_{\rm lin,0}}$$

mathematically, it converges if $|a(au)\delta_{\mathrm{lin},0}| = |\delta_{\mathrm{lin}}(0, au)| < 1$

the true answer is
$$\delta_{\text{true}}(0,\tau) = -1 + \sum_{i=1}^{N_{\text{streams}}} \frac{1}{|1 + \psi'(q_i(0),\tau)|}$$

if also
$$N_{\text{streams}} = 1$$
, $\delta_{\text{SPT}}(0,\tau) \to \delta_{\text{true}}(0,\tau) = \delta_Z(0,\tau) = -\frac{\psi'_Z(0,\tau)}{1+\psi'_Z(0,\tau)}$

SPT does not converge to the true answer if there is multi-streaming and for $|a(\tau)\delta_{\mathrm{lin},0}| \ge 1$

What happens when
$$|\psi_Z'(0,\tau)| = |a(\tau)\delta_{\mathrm{lin},0}| = 1$$
 ?

- the mapping becomes singular and the distribution function diverges
- the perturbative expansion does not converge any more
- after shell-crossing, non-locality in lagrangian space

Voids

- the linear density contrast becomes unphisical $(\delta \ge -1)$ but the true density contrast is still meaningful $(\delta_{true} = -\frac{1}{2})$
- the PT expansion can be analytically continued as

$$\delta_{\rm SPT}(0,\tau) = \sum_{n=0}^{\infty} a(\tau)^n \delta_{\rm lin,0}^n \to \frac{a(\tau)\delta_{\rm lin,0}}{1 - a(\tau)\delta_{\rm lin,0}}$$

Exact dynamics

$$\begin{aligned} \partial_{\eta}\Psi(q,\eta) &= \chi(q,\eta) \,,\\ \partial_{\eta}\chi(q,\eta) &= -\frac{1}{2}\chi(q,\eta) + \frac{3}{2}\sum_{i=1}^{N_s(x,\eta)} (-1)^{i+1}\Psi(q_i(x,\eta),\eta) \end{aligned}$$

$$\eta = \log \frac{a}{a_0} = -\log(1+z)$$

initial conditions on the linear growing mode: $\Psi(q, \eta_{in}) = \chi(q, \eta_{in}) = \frac{v(q, \eta_{in})}{\mathcal{H}(\eta_{in})}$

Algorithm:

- 1) For each x, find the set of all q's such that $q + \Psi(q, \eta) = x$
- 2) Compute the force in x, valid for all q's in the corresponding set;
- 3) Increment $\chi(q,\eta)$ and $\Psi(q,\eta)$
- 4) Go to 1)

Gaussian overdensity

time -> a=0.63 a=0.154 0.4 0.4 0.2 0.2 Χ 0.0 × 0.0 -0.2 -0.2 -0.4 -0.4 0.4 0.2 -0.4 -0.20.2 0.4 -0.4 -0.2 0.4 -0.2 0.0 0.0 q q q q

first shell crossing

exact Zel'dovich

Phase space

Force

Zel'dovich fails at O(1) soon after the first shell-crossing!

Two gaussians

1+1 Universe

$$\Psi(q,\eta_{in}) = \chi(q,\eta_{in}) = \frac{1}{L} \sum_{m=1}^{N_p} c_m \cos(q \, p_m + \phi_m)$$

 $c_m's$ from a Rayleigh distribution with $\sigma_m =$ random phases

$$\sqrt{\frac{LP_{1D}(p_m)}{2p_m^2}}$$

Phase space

Lessons from the LineLand

- 1) The perturbative expansion fails in voids and in shell-crossing (multistreaming) regions;
- In voids, the perturbative series can be analytically continued to the exact solution, in multistreaming regions this is not possible;
- 3) The dynamics after shell-crossing becomes *nonlocal* in lagrangian space;
- 4) Any extension of the Zel'dovich approximation beyond shellcrossing is meaningless: the force gets O(1) corrections.