Nonlinear Perturbation Theory for the Large Scale Structure

M. Pietroni - INFN, Padova

XIII Tonale Winter School on Cosmology, 9-13 Dec. 2019

Lecture 3

Outline

- brief review of statistical field theory
- the setup: Eulerian vs Lagrangian, equations of motion
- structure formation in the LineLand (1+1 dimensions)
- Standard Perturbation Theory
- performance and problems of SPT (response functions)
- IR effects: resummations and BAO's
- UV behavior: Effective approaches
(drop the time dependence)

$$
\begin{aligned}
& \frac{\partial}{\partial \tau} \delta_{R}(\mathbf{x})+\frac{\partial}{\partial x^{i}}\left[\left(1+\delta_{R}(\mathbf{x})\right) v_{R}^{i}(\mathbf{x})\right]=0 \quad \text { continuity eq. } \\
& \frac{\partial}{\partial \tau} v_{R}^{i}(\mathbf{x})+\mathcal{H} v_{R}^{i}(\mathbf{x})+v_{R}^{k}(\mathbf{x}) \frac{\partial}{\partial x^{k}} v_{R}^{i}(\mathbf{x})=-\nabla_{x}^{i} \phi_{R}(\mathbf{x})-J_{\sigma}^{i}(\mathbf{x})-J_{1}^{i}(\mathbf{x}) \\
& \text { Euler eq. } \\
& J_{\sigma}^{i}(\mathbf{x}) \equiv \frac{1}{1+\delta_{R}(\mathbf{x})} \frac{\partial}{\partial x^{k}}\left(\left(1+\delta_{R}(\mathbf{x})\right) \sigma_{R}^{k i}(\mathbf{x})\right) \\
& J_{1}^{i}(\mathbf{x}) \equiv \frac{1}{1+\delta(\mathbf{x})}\left(\left\langle(1+\delta) \nabla^{i} \phi\right\rangle_{R}(\mathbf{x})-\left(1+\delta_{R}\right)(\mathbf{x}) \nabla^{i} \phi_{R}(\mathbf{x})\right)
\end{aligned}
$$

To close the system, we must provide information on the short-distance effects
Buchert, Dominguez, '05, Pueblas Scoccimarro, '09, Baumann et al. '10
M.P., G. Mangano, N. Saviano, M. Viel, 1108.5203, Carrasco, Hertzberg, Senatore,1206.2976

Single stream approximation

$$
\text { Set } \sigma^{i j}=\omega^{i j k}=\cdots=\nabla \times \mathbf{v}=0
$$

...+ no higher moments, no vorticity,...
$f(\mathbf{x}, \mathbf{p}, \tau)=\bar{\rho}(1+\delta(\mathbf{x}, \tau)) \delta_{D}(\mathbf{p}-a m \nabla \varphi(\mathbf{x}, \tau))$
System described by $\delta(\mathbf{x}, \tau), \quad \theta(\mathbf{x}, \tau) \equiv \nabla^{2} \varphi(\mathbf{x}, \tau) \equiv \nabla \cdot \mathbf{v}(\mathbf{x}, \tau)$

$$
\begin{array}{lc}
\frac{\partial \delta}{\partial \tau}+\nabla \cdot((1+\delta) \mathbf{v}) & \text { continuity } \\
\frac{\partial \mathbf{v}}{\partial \tau}+\mathcal{H} \mathbf{v}+(\mathbf{v} \cdot \nabla) \mathbf{v}=-\nabla \phi & \text { Euler } \\
\nabla^{2} \phi=\frac{3}{2} \Omega_{M} \mathcal{H}^{2} \delta & \text { Poisson }
\end{array}
$$

Linear order solution

$$
\begin{aligned}
& \frac{\partial \delta}{\partial \tau}+\theta=0 \\
& \frac{\partial \theta}{\partial \tau}+\mathcal{H} \theta=-\nabla^{2} \phi \\
& \nabla^{2} \phi=\frac{3}{2} \Omega_{M} \mathcal{H}^{2} \delta
\end{aligned}
$$

linear GR equation for $k \gg \mathcal{H}$

For EdS $\left(\Omega_{\mathrm{M}}=1\right): \quad D_{ \pm}=\left(\frac{a(\tau)}{a\left(\tau_{i n}\right)}\right)^{f_{ \pm}} \quad f_{+}=1, f_{-}=-3 / 2$

Compact notation

$$
\varphi_{a}(\mathbf{k}, \eta)=e^{-\eta}\binom{\delta(\mathbf{k}, \eta)}{-\theta(\mathbf{k}, \eta) /(\mathcal{H} f)}
$$

$$
\eta \equiv \log D(\tau) / D\left(\tau_{0}\right)
$$

The continuity+Euler+Poisson system reads:

$$
\left(\delta_{a b} \partial_{\eta}+\Omega_{a b}(\eta)\right) \varphi_{b}(\mathbf{k}, \eta)=e^{\eta} \int \frac{d^{3} q}{(2 \pi)^{3}} \frac{d^{3} p}{(2 \pi)^{3}} \delta_{D}(\mathbf{k}-\mathbf{q}-\mathbf{p}) \gamma_{a b c}(\mathbf{k}, \mathbf{q}, \mathbf{p}) \varphi_{b}(\mathbf{q}, \eta) \varphi_{c}(\mathbf{p}, \eta)
$$

linear
$\Omega_{a b}(\eta)=\left(\begin{array}{cc}1 & -1 \\ -\frac{3}{2} \frac{\Omega_{m}(\eta)}{f^{2}(\eta)} & \frac{3}{2} \frac{\Omega_{m}(\eta)}{f^{2}(\eta)}\end{array}\right) \quad \begin{aligned} & \gamma_{112}(\mathbf{k}, \mathbf{q}, \mathbf{p})=\gamma_{121}(\mathbf{k}, \mathbf{p}, \mathbf{q})=\frac{\mathbf{k} \cdot \mathbf{p}}{2 p^{2}} \\ & \gamma_{222}(\mathbf{k}, \mathbf{q}, \mathbf{p})=\frac{k^{2} \mathbf{q} \cdot \mathbf{p}}{2 q^{2} p^{2}}\end{aligned}$

$$
\begin{aligned}
& \varphi_{1}^{(1)}(\mathbf{k}, \eta)=\varphi_{2}^{(1)}(\mathbf{k}, \eta) \equiv \varphi^{(1)}(\mathbf{k}) \text { linear solution } \\
& g_{a b}(\eta)=\left[\left(\begin{array}{ll}
3 / 5 & 2 / 5 \\
3 / 5 & 2 / 5
\end{array}\right)+e^{-5 / 2 \eta}\left(\begin{array}{cc}
2 / 5 & -2 / 5 \\
-3 / 5 & 3 / 5
\end{array}\right)\right] \Theta(\eta) \text { linear propagator } \\
& \varphi_{a}^{(2)}(\mathbf{k}, \eta)=\int_{0}^{\eta} d s g_{a b}(\eta-s) e^{s} I_{\mathbf{k}, \mathbf{q}, \mathbf{p}} \gamma_{b c d}(\mathbf{k}, \mathbf{q}, \mathbf{p}) \varphi_{c}^{(1)}(\mathbf{q}, s) \varphi_{d}^{(1)}(\mathbf{p}, s) \\
&=e^{2 \eta} I_{\mathbf{k}, \mathbf{q}_{1}, \mathbf{q}_{2}} F_{a}^{(2)}\left(\mathbf{q}_{1}, \mathbf{q}_{2}\right) \varphi^{(1)}\left(\mathbf{q}_{1}\right) \varphi^{(1)}\left(\mathbf{q}_{2}\right) 2^{\text {nd }} \text { order solution } \\
&\left(I_{\mathbf{k}, \mathbf{q}_{1}, \cdots, \mathbf{q}_{\mathbf{n}}} \equiv \int \frac{d^{3} q_{1}}{(2 \pi)^{3}} \cdots \frac{d^{3} q_{n}}{(2 \pi)^{3}} \delta_{D}\left(\mathbf{k}-\sum_{i=1}^{n} \mathbf{q}_{\mathbf{i}}\right)\right) \\
& \cdots \\
& \varphi_{a}^{(n)}(\mathbf{k}, \eta)=e^{n \eta} I_{\mathbf{k}, \mathbf{q}_{1}, \cdots, \mathbf{q}_{n}} F_{a}^{(n)}\left(\mathbf{q}_{1}, \cdots, \mathbf{q}_{n}\right) \varphi^{(1)}\left(\mathbf{q}_{1}\right) \cdots \varphi^{(1)}\left(\mathbf{q}_{n}\right) \\
& \mathrm{n}^{\text {th }} \text { order solution }
\end{aligned}
$$

If the initial conditions are gaussian, then only correlators involving an even number of initial fields are non-vanishing
tree-level
Power spectrum: $\left\langle\varphi_{a}(\mathbf{k}, \eta) \varphi_{b}\left(\mathbf{k}^{\prime}, \eta\right)\right\rangle=\left\langle\varphi_{a}^{(1)}(\mathbf{k}, \eta) \varphi_{b}^{(1)}\left(\mathbf{k}^{\prime}, \eta\right)\right\rangle$

$$
\begin{aligned}
& \text { one-loop }+\left\langle\varphi_{a}^{(1)}(\mathbf{k}, \eta) \varphi_{b}^{(3)}\left(\mathbf{k}^{\prime}, \eta\right)\right\rangle+\left\langle\varphi_{a}^{(3)}(\mathbf{k}, \eta) \varphi_{b}^{(1)}\left(\mathbf{k}^{\prime}, \eta\right)\right\rangle \\
&++\left\langle\varphi_{a}^{(2)}(\mathbf{k}, \eta) \varphi_{b}^{(2)}\left(\mathbf{k}^{\prime}, \eta\right)\right\rangle+O\left(\left(\varphi^{i n}\right)^{6}\right) \\
&+\ldots
\end{aligned}
$$

Bispectrum:

$$
\begin{array}{r}
\left\langle\varphi_{a}(\mathbf{k}, \eta) \varphi_{b}\left(\mathbf{k}^{\prime}, \eta\right) \varphi_{c}\left(\mathbf{k}^{\prime \prime}, \eta\right)\right\rangle=\left\langle\varphi_{a}^{(2)}(\mathbf{k}, \eta) \varphi_{b}^{(1)}\left(\mathbf{k}^{\prime}, \eta\right) \varphi_{c}^{(1)}\left(\mathbf{k}^{\prime \prime}, \eta\right)\right\rangle \\
\text { tree-level } \quad+2 \text { permutations }+O\left(\left(\varphi^{i n}\right)^{6}\right)
\end{array}
$$

Computation of the Power Spectrum

$$
P(k, \tau)=D^{2}(\tau) P_{11}(k)+D^{4}(\tau)\left[P_{13}(k)+P_{22}(k)\right]+\ldots
$$

linear PS: output from CAMB, CLASS, ...

$$
\begin{aligned}
& \left.\left.P_{13}(k)=\frac{k^{3} P_{11}(k)}{252(2 \pi)^{2}} \int_{0}^{\infty} d r P f_{1}(k r) \frac{12}{x^{2}}-158+100 r^{2}-42 r^{4}+\frac{3}{r^{3}}\left(r^{2}-1\right)^{3}\left(7 r^{2}+2\right) \ln \left|\frac{1+r}{1-r}\right|\right]\right] \\
& P_{22}(k)=\frac{k^{3}}{98(2 \pi)^{2}} \int_{0}^{\infty} d r P_{11}(k r) \int_{-1}^{1} d x P_{11}\left[k\left(1+r^{2}-2 r x\right)^{1 / 2}\right] \frac{\left(3 r+7 x-10 r x^{2}\right)^{2}}{\left(1+r^{2}-2 r x\right)^{2}}
\end{aligned}
$$

Cosmology information in $P_{11}(k)$ and $D(\tau)$

Integrals to be performed numerically for ^CDM...

FFTLog approach

$$
\text { Simonovic et al } 1708.08130
$$

Fourier Transform the PS (with respect to $\log k$)

$$
\bar{P}_{\mathrm{lin}}\left(k_{n}\right)=\sum_{m=-N / 2}^{m=N / 2} c_{m} k_{n}^{\nu+i \eta_{m}}
$$

(ν is a parameter)

$$
\eta_{m}=\frac{2 \pi m}{\log \left(k_{\max } / k_{\min }\right)} \quad c_{m}=\frac{1}{N} \sum_{l=0}^{N-1} P_{\operatorname{lin}}\left(k_{l}\right) k_{l}^{-\nu} k_{\min }^{-i \eta_{m}} e^{-2 \pi i m l / N}
$$

$\log k$

$$
P_{22}(k)=2 \int_{\boldsymbol{q}} F_{2}^{2}(\boldsymbol{q}, \boldsymbol{k}-\boldsymbol{q}) P_{\operatorname{lin}}(q) P_{\operatorname{lin}}(|\boldsymbol{k}-\boldsymbol{q}|)
$$

$$
F_{2}(\boldsymbol{q}, \boldsymbol{k}-\boldsymbol{q})=\frac{5}{14}+\frac{3 k^{2}}{28 q^{2}}+\frac{3 k^{2}}{28|\boldsymbol{k}-\boldsymbol{q}|^{2}}-\frac{5 q^{2}}{28|\boldsymbol{k}-\boldsymbol{q}|^{2}}-\frac{5|\boldsymbol{k}-\boldsymbol{q}|^{2}}{28 q^{2}}+\frac{k^{4}}{14|\boldsymbol{k}-\boldsymbol{q}|^{2} q^{2}}
$$

The 1-loop integral becomes a combination of

$$
\int_{\boldsymbol{q}} \frac{1}{q^{2 \nu_{1}}|\boldsymbol{k}-\boldsymbol{q}|^{2 \nu_{2}}} \equiv k^{3-2 \nu_{12}} \boldsymbol{I}\left(\nu_{1}, \nu_{2}\right)
$$

$$
\text { with } \quad \mathrm{I}\left(\nu_{1}, \nu_{2}\right)=\frac{1}{8 \pi^{3 / 2}} \frac{\Gamma\left(\frac{3}{2}-\nu_{1}\right) \Gamma\left(\frac{3}{2}-\nu_{2}\right) \Gamma\left(\nu_{12}-\frac{3}{2}\right)}{\Gamma\left(\nu_{1}\right) \Gamma\left(\nu_{2}\right) \Gamma\left(3-\nu_{12}\right)}
$$

(+ symetries and recursion relations ...)

Cosmology dependence

Integrals done once forever

(PS shape)

$$
M_{22}\left(\nu_{1}, \nu_{2}\right)=\frac{\left(\frac{3}{2}-\nu_{12}\right)\left(\frac{1}{2}-\nu_{12}\right)\left[\nu_{1} \nu_{2}\left(98 \nu_{12}^{2}-14 \nu_{12}+36\right)-91 \nu_{12}^{2}+3 \nu_{12}+58\right]}{196 \nu_{1}\left(1+\nu_{1}\right)\left(\frac{1}{2}-\nu_{1}\right) \nu_{2}\left(1+\nu_{2}\right)\left(\frac{1}{2}-\nu_{2}\right)} \mathbf{I}\left(\nu_{1}, \nu_{2}\right)
$$

Loop integral —> FFT+matrix multiplication: Very Fast!!

Performance of Standard PT

$$
P(k, z)=D(z)^{2} P^{(1)}(k)+D(z)^{4} F^{(1 l)}(k)+D(z)^{6} F^{(2 l)}(k)+\cdots
$$

$$
z=0
$$

linear

Baryonic Acoustic Osicllations

Galaxy map 3.8 billion years ago
Galaxy map 5.5 billion years ago
CMB 13.7 billion years ago

Credit: Eric Huff, the SDSS-III team, and the South Pole Telescope team
See Vanina's (and Marco's) lectures!
$s=\frac{1}{H_{0} \Omega_{m}^{1 / 2}} \int_{0}^{a_{*}} d a \frac{c_{s}}{\left(a+a_{e q}\right)^{1 / 2}} \simeq 110 \mathrm{Mpc} h^{-1}$
comoving sound horizon at recombination
same comoving scale seen in CMB anisotropies and in LSS at different redshifts. Map from comoving to (angular and diameter) distances is cosmology-dependent: STANDARD RULER

$k_{B A O}=\frac{2 \pi}{s} \simeq 0.057 h / \mathrm{Mpc}$

sound horizon from LSS vs. Planck

nonlinear effects on BAO's

random displacements

$$
\left\langle\psi^{2}(0)\right\rangle=\int \frac{d^{3} p}{(2 \pi)^{3}}\left\langle\tilde{\psi}(\mathbf{p})^{2}\right\rangle^{\prime}=\int \frac{d^{3} p}{(2 \pi)^{3}} \frac{P(p)}{p^{2}} \simeq(6 \mathrm{Mpc} / \mathrm{h})^{2}
$$ (in linear theory)

how to include random displacements (sketch)

effect of a long($\sim 10-100$
$\mathrm{Mpc} / \mathrm{h}$) wavelength displacement
on a short (< $10 \mathrm{Mpc} / \mathrm{h}$)
wavelength density perturbation

$$
\begin{aligned}
& \delta(\mathbf{x}) \simeq \int d^{3} q \delta_{\operatorname{lin}}(\mathbf{q}) \delta_{D}(\mathbf{q}+\psi(\mathbf{q})-\mathbf{x}) \\
& \delta(\mathbf{k}) \simeq \int d^{3} q \delta_{\operatorname{lin}}(\mathbf{q}) e^{i \mathbf{k} \cdot(\mathbf{q}+\psi(\mathbf{q}))}
\end{aligned}
$$

$$
P(k)=\langle\delta(\mathbf{k}) \delta(-\mathbf{k})\rangle^{\prime} \simeq \int d^{3} r \xi_{\operatorname{lin}}(r) e^{i \mathbf{k} \cdot \mathbf{r}}\left\langle e^{i \mathbf{k} \cdot \Delta \psi(r)}\right\rangle
$$

gaussian field

$$
\Delta \psi(r) \equiv \psi(r / 2)-\psi(-r / 2)
$$

Exponential damping!

Effect on the BAO peak/wiggles

$$
\xi_{\text {lin }}(r)=\xi_{\text {lin,smooth }}(r)+\xi_{\text {lin,peak }}(r)
$$

$P_{\text {wiggle }}(k)=\int d^{3} r \xi_{\text {lin, peak }}(r) e^{i \mathbf{k} \cdot \mathbf{r}} e^{-\frac{k^{2}\left\langle\Delta \psi(r)^{2}\right\rangle}{2}} \simeq e^{-\frac{k^{2}\left\langle\Delta \psi\left(r_{s}\right)^{2}\right\rangle}{2}} P_{\text {linear,wiggle }}(k)$
$\left\langle\Delta \psi\left(r_{s}\right)^{2}\right\rangle=\frac{1}{6 \pi^{2}} \int d p P_{\operatorname{lin}}(p)\left(1-j_{0}\left(p r_{s}\right)+2 j_{2}\left(p r_{s}\right)\right)$

Different ways to include displacements lead to equivalent results. Well understood theoretically.
Not a nuisance, but a calculable physical effect!!

BOSS analysis (Beutler et al '16)

$$
\begin{gathered}
P(k)=B^{2} \underbrace{}_{\text {sm,lin }}(k) F_{\mathrm{fog}}\left(k, \Sigma_{s}\right) \\
\left.\left.\frac{a_{0,1}}{k^{3}}+\frac{a_{0,2}}{k^{2}}+\frac{a_{0,3}}{k}+a_{0,4}+a_{0,5} k \quad \longleftarrow \frac{P_{\operatorname{lin}}(k)}{P_{\mathrm{sm}, \operatorname{lin}}(k)}-1\right) \mathrm{e}^{-k^{2} \Sigma_{\mathrm{n} 1}^{2} / 2}\right]
\end{gathered}
$$

Noda, MP, Peloso 1901.06854

$$
\begin{gathered}
P_{\text {model }}(k, \mu ; b, A)=e^{-A k^{2}}\left[\left(b+\mu^{2} f R_{s d}(k)\right)^{2}\left(P^{n w, l}(k)+P^{w, l}(k) e^{-k^{2} \Xi^{r s}(\mu) / \gamma_{r e c}}\right)\right. \\
\left.+b^{2} \Delta P_{\delta \delta}^{n w, 1 l}(k)+2 b \mu^{2} f \Delta P_{\delta \theta}^{n w, 1 l}(k)+\mu^{4} f^{2} \Delta P_{\theta \theta}^{n w, 1 l}\right],
\end{gathered}
$$

BOSS analysis (Beutler et al '16)

Noda, MP, Peloso 1901.06854

BOSS collaboration						
	Pre-reconstruction			Post-reconstruction		
	α	error	χ^{2} / gdl	α	error	χ^{2} / gdl
$0.2<z<0.5$	1.006	0.016	$48.5 / 48$	1.000	0.010	$43.9 / 48$
$0.4<z<0.6$	1.016	0.017	$64.8 / 48$	0.9936	0.0082	$32.8 / 48$
$0.5<z<0.75$	0.991	0.019	$49.8 / 48$	0.9887	0.0087	$47.0 / 48$

Extractor procedure

	Pre-reconstruction			Post-reconstruction		
	α	error	χ^{2} / gdl	α	error	χ^{2} / gdl
$0.2<z<0.5$	1.005	0.007	$48 / 47$	1.003	0.006	$40 / 47$
$0.4<z<0.6$	1.008	0.007	$53 / 47$	1.000	0.006	$40 / 47$
$0.5<z<0.75$	0.999	0.007	$41 / 44$	0.999	0.006	$38 / 47$

BOSS data already sensitive to BAO's at subpercent level!

Performance of Standard PT

$$
P(k, z)=D(z)^{2} P^{(1)}(k)+D(z)^{4} F^{(1 l)}(k)+D(z)^{6} F^{(2 l)}(k)+\cdots
$$

$$
z=0
$$

linear

MODE COUPLING

Linear Response Function
$K(k, q ; z)=q \frac{\delta P^{\mathrm{nl}}(k ; z)}{\delta P^{\operatorname{lin}}(q ; z)}$

IR: "Galilean" invariance (EP) $K(k, q ; z) \sim q^{3}$

UV: SPT over predicts the effect of small scales on intermediate ones

Nishimichi, Bernardeau, Taruya 1411.2970

The effect of short scales (UV)

Effect of an isolated small density profile $\sim r$ at large distance $R(\gg r)$

Monopole and dipole cancel (mass conservation+momentum conservation): potential generated by quadrupole:

$$
\phi(R) \propto r^{2} / R^{3} \quad \delta \propto \nabla^{2} \phi(R) \rightarrow \delta(k) \propto k^{2} \quad P(k) \propto k^{4}
$$

PT exhibits the k^{4} decoupling of small scales q ($\mathrm{k} \ll \mathrm{q}$)
However, virialized structures decouple more efficiently than k^{4} (Peebles '80, Baumann et al 1004.2488, Blas et al 1408.2995).
Highly nonlinear scales decouple.
This effect is missed by the single stream approximation.

Effective approaches to the UV

* Perturbation Theory (even after resummations) fails at short scales due to non-convergent series and multistreaming
* General idea: take the UV physics from N-body simulations and use PT only for the large and intermediate scales

