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short-distance effects

To close the system, we must provide information on the short-distance effects
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Single stream approximation

Set �ij = !ijk = · · · = r⇥ v = 0 …+ no higher moments, no 
vorticity,…
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Linear order solution
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SPT=Iterative solution
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If the initial conditions are gaussian, then only correlators 
involving an even number of initial fields are non-vanishing

Bispectrum: h'a(k, ⌘)'b(k
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Computation of the Power Spectrum

3

B. Standard Eulerian perturbation theory

Perturbation theory consists of writing the density and velocity fields as a series of terms of at least formally
increasing order of smallness, i.e., δ = δ1 + δ2 + δ3 + .... The evolution equations are solved order-by-order, with lower
order solutions appearing as sources in the higher order equations so that δn is of order δn

1 [12]. The power spectrum
for Gaussian initial conditions is given by

⟨δ(k)δ(k′)⟩ = ⟨δ1(k)δ1(k
′)⟩ + ⟨δ1(k)δ3(k

′)⟩ + ⟨δ3(k)δ1(k
′)⟩ + ⟨δ2(k)δ2(k

′)⟩ + ... (7)

where no terms 3rd order in δ1 appear because the expectation value of any term cubic in a Gaussian field is zero.
At this point I assume an Einstein-de Sitter Universe for simplicity, and define

P (k, τ) = D2(τ)P11(k) + D4(τ) [P13(k) + P22(k)] + ... , (8)

where D(τ) = δ1(τ)/δinitial is the linear theory growth factor. The Einstein-de Sitter assumption is needed to
avoid more complicated time dependence of P13 and P22, but the real Universe is of course not Einstein-de Sitter.
Fortunately, this is not a significant problem because, to percent level accuracy [28, 60, 61, 62, 63, 64, 65, 66], the
effect of changing the background model can be included by simply using the correct linear growth factor in Eq. (8). I
will sometimes refer to P13 and P22 as 2nd order, meaning in the initial power spectrum amplitude, not to be confused
with the fact that they are 4th order in δ1 and require calculating the evolution of δ to 3rd order, i.e., δ3. [67] derived
the following useful form of the equations for P13(k) and P22(k):

P13(k) =
k3P11(k)
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Note that, due to many cancellations, these terms are not as divergent as they might appear at first glance, their sum
being convergent at high k for power law P11(k) with n = d lnP/d ln k < −1 and at low k when n > −3 [67]. Their
sum is zero for n ≃ −1.4 [12], a fact that will have interesting consequences for our RG calculation.

C. Renormalization group improvement

The problem with the standard calculation outlined in §II B, which leads us to renormalization, is that the 2nd
term in Eq. (8) diverges relative to the first (although it does not literally become infinite for realistic power spectra),
at increasingly large scales (small k) as time progresses. This divergence is not exactly unphysical – we expect non-
linearities to become important during gravitational collapse – however, the basic premise of perturbation theory is
violated when higher order terms become large. There is no a priori reason to expect the results to be accurate. I
employ a renormalization group calculation to cure this divergence. I start in §II C 1 with a quick derivation motivated
by the method of [43]. Then I discuss the mathematical background, physical interpretation, approximations, and
limitations of the method in §II C 2.

1. Simple calculation

To simplify the presentation of the calculation, I rewrite Eq. (8) in a more compact, schematic form,

P̃ (k, τ) ≃ PL(k) + A
[

P 2
L

]

(k) , (11)

where A ∝ D2(τ), P̃ (k, τ) ≡ P (k, τ)/A, PL(k) is the initial condition power, and [P 2
L](k) ≡ P13(k) + P22(k) is the

higher order correction term, which is quadratic in PL(k), as given by Eqs. (9) and (10). I now follow the method
described in [43] to deal with the problem of the 2nd order term becoming large (deferring a detailed explanation of
the meaning of this method to §II C 2). I rewrite A = A − A⋆ + A⋆, where A⋆ is just an arbitrary constant, so that

P̃ (k, τ) = PL(k) + A⋆

[

P 2
L

]

(k) + (A − A⋆)
[

P 2
L

]

(k) . (12)
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Integrals to be performed numerically for 𝝠CDM… 



FFTLog approach
Simonovic et al 1708.08130

dimensionality. This poses a direct challenge to our ability to interrogate large datasets and one

that merely more and faster computers will not address.

In order to simplify and speed up loop calculations we require new ideas, new strategies, to

approach the problem. One inspiring idea, developed in [9] and [10], is to use Fast Fourier Trans-

form (FFT) for e�cient evaluation of the one-loop power spectrum. After first “deconvolving”

the lowest order PT solutions, and performing all angular integrals, the one-loop expressions

reduce to a set of simple one-dimensional integrals that can be e�ciently evaluated using FFT.

Unfortunately, deconvolving higher order perturbative solutions and extending this approach to

the one-loop bispectrum or the two-loop power spectrum proves to be challenging [11].

In this paper we build on ideas of [9, 10] but choose a slightly di↵erent strategy which allows

us to go beyond the one-loop power spectrum. Let us briefly sketch the main idea behind our

proposal. Prior to doing any integrals, the linear power spectrum is expanded as a superposition

of ideal self-similar power-law cosmologies. This is naturally accomplished using FFT in log k.

Given some range of wavenumbers of interest, from kmin to kmax, the approximation for the linear

power spectrum with N sampling points is [9, 12]

P̄lin(kn) =

m=N/2X

m=�N/2

cm k⌫+i⌘m
n , (1.1)

where the coe�cients cm and the frequencies ⌘m are given by

cm =
1

N

N�1X

l=0

Plin(kl) k�⌫
l k�i⌘m

min e�2⇡iml/N , ⌘m =
2⇡m

log(kmax/kmin)
. (1.2)

Notice that the we denote the approximation for the linear power spectrum with P̄lin(k), while

eq. (1.2) uses the exact linear power spectrum Plin(k) to calculate the coe�cients cm. We will keep

using the same notation throughout the paper. The parameter ⌫ is an arbitrary real number. As

we will see, the simplest choice ⌫ = 0 is insu�cient in some applications, so we will use the more

general form of the Fourier transform. In the terminology of [9] we call this ⌫ parameter bias.

Note that the powers in the power-law expansion are complex numbers. In practice, even a small

number of power-laws, O(100), is enough to capture all features of the linear power spectrum

including the BAO wiggles. One important thing to keep in mind is that the Fourier transform

produces the power spectrum that is periodic in log k. Therefore, we will take care to choose kmin

and kmax such that we cover the range of scales where we actually care about the value of the

power spectrum. In other words we are choosing the momentum range where the loop integrals

have the most of the support. However, one always has to be careful about possible contributions

particularly from high k modes or short scales.

Is this a limitation? Absolutely not. At the heart of the EFT understanding is the simple

recognition that the PT idealized description of satisfying fluid-like equations of motion can only

be valid at certain scales. This is much the same as the hydrodynamic description of liquid water

is only valid at certain scales. Attempting to integrate this approximation over scales outside

of its validity introduces non-parametrically controlled errors. Instead the information in the
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Figure 1: One, two and three-loop contributions to the equal-time power spectrum
obtained from a numerical Monte Carlo integration within standard perturbation
theory at z = 0. The linear power spectrum is obtained from the initial power
spectrum from CAMB [20] using the ΛCDM model with WMAP5 parameters.
For the three-loop order, the error bars show an estimate for the numerical error
obtained by multiplying the error output of the CUBA routine Suave by a factor
of two. The relative error is ≤ 0.002 for k ≤ 0.55 h/Mpc. The black diamonds
and grey crosses correspond to two different parametrizations of the absolute loop
momenta (see App. A).

scales. For even larger momentum k, one observes that each loop contri-
bution features the expected behavior (3.2) with a logarithmic enhancement
compared to the linear spectrum. But also in this regime, the loop expansion
appears to be divergent.

The picture might change if one goes to larger redshift z, where the
expansion parameter can be efficiently suppressed since σ2

l ∝ D+(z)2 ∼ (1 +
z)−2. In Figs. 2 and 3 we show some comparisons between our three-loop
SPT results (black lines and diamonds) and N-body simulations (red dots,
Horizon Run 2 [27]) for various redshifts (see App. C for further details). For
large redshift (z ! 1.75) the three-loop contribution may lead to an improved
agreement with the N-body data, while it clearly degrades the agreement
compared to the two-loop at lower redshifts. The same happens for the two-
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2 One-loop Power Spectrum

Let us first consider the simplest case—the one-loop power spectrum. In perturbation theory

there are two di↵erent one-loop contributions. Using the usual approximation in which the time

dependence is separated from k dependence (for a review see [8]), the one-loop power spectrum

reads

P1�loop(k, ⌧) = D4(⌧)[P22(k) + P13(k)] , (2.1)

where ⌧ is conformal time, D(⌧) is the growth factor for matter fluctuations and the two terms

in the square brackets are given by

P22(k) = 2

Z

q
F 2

2 (q,k � q)Plin(q)Plin(|k � q|) , (2.2)

P13(k) = 6Plin(k)

Z

q
F3(q,�q,k)Plin(q) , (2.3)

where
R
q ⌘

R d3q
(2⇡)3 . Diagrammatic representation of these two contributions is shown in Fig. 1.

The explicit form of kernels Fn can be calculated using well-known recursion relations [8]. One

important point is that it is always possible to expand kernels in (2.2) and (2.3) in integer powers

of k2, q2 and |k � q|2. For example,

F2(q,k � q) =
5

14
+

3k2

28q2
+

3k2

28|k � q|2
�

5q2

28|k � q|2
�

5|k � q|2

28q2
+

k4

14|k � q|2q2
. (2.4)

A similar expression can be found for F3(q,�q,k).2 If we further decompose Plin(k) in power

laws using (1.1), the one-loop power spectrum becomes a sum of simple momentum integrals of

the following form Z

q

1

q2⌫1 |k � q|2⌫2
⌘ k3�2⌫12 I(⌫1, ⌫2) , (2.5)

where ⌫1 and ⌫2 are in general complex numbers.
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Figure 1. Diagrammatic representation of two contributions to the one-loop power spectrum.

As we already mentioned, the form of the integral is identical to the one-loop massless two

point function in QFT. The only di↵erence is that in this case the powers of the “propagators”

2In the expansion of F3(q,�q,k) some terms contain |k + q|2. Given that the kernels are always integrated

over q, one is allowed to do the following change of coordinates q ! �q and bring these terms to the same form

as in (2.4)
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The 1-loop integral 
becomes a combination of

are complex numbers rather than integers. Still, the unknown dimensionless function I(⌫1, ⌫2)

can be easily calculated using the standard technique with Feynman parameters. The result is a

well known expression [13, 14]

I(⌫1, ⌫2) =
1

8⇡3/2

�(3
2 � ⌫1)�(3

2 � ⌫2)�(⌫12 �
3
2)

�(⌫1)�(⌫2)�(3 � ⌫12)
, (2.6)

were ⌫12 = ⌫1 + ⌫2 (throughout the paper we adopt the following notation ⌫1...n ⌘ ⌫1 + · · ·+ ⌫n).

Notice that, thanks to the analytic continuation, I(⌫1, ⌫2) gives a finite answer even for the

values of parameters for which the integral is formally divergent. In practice, breaking the loop

calculation into many pieces can lead to some divergent terms. However, as long as the total

sum is well defined and finite, for at least some power-law cosmology Plin(k) ⇠ k⌫ , by analytic

continuation it is guaranteed that eq. (2.6) gives the correct answer.

Sometimes the condition that the integral at hand is convergent for at least some power-law

power spectrum cannot be met, and one has to use eq. (2.6) with some care. For example,

the function I(⌫1, ⌫2) vanishes if one of the arguments is zero (or a negative integer). Apply-

ing (2.6) blindly would lead in these cases to paradoxical results. For instance, after power-law

decomposition of the linear power spectrum, eq. (2.6) would imply

Z 1

0
dq Plin(q) = 0 , (2.7)

which is obviously the wrong answer. This is a consequence of the well known statement that in

dimensional regularization all power-law divergences vanish:
R
q q⌫ = 0.3

Similar issues can appear in calculating loop diagrams. Luckily, for a ⇤CDM-like cosmology,

they can be always easily fixed. Let us imagine that the integral we are interested in is divergent

for a given bias ⌫. Then, if the integral diverges in the UV(IR), one has to find the UV(IR)

limit of the integrand. This can be easily done fixing all external momenta and sending the loop

momentum to infinity(zero). This limit always has the form of eq. (2.7) and it would be set to

zero by dimensional regularization. Therefore, to get the correct answer, one simply has to add

the UV(IR) contribution by hand. In the following sections we will give more details for each

specific case we consider.

Let us also point out that all UV divergences have a well defined momentum dependence. This

momentum dependence is the same as for the counterterms in the EFTofLSS. Therefore, one can

proceed without explicitly adding the UV-dependent terms to the loop calculation. The only

e↵ect of this choice is to change the usual values of the counterterms. In this sense we can say

that eq. (2.6) calculates only the “finite” part of the loop integral. As expected, the counterterms

absorb all UV-dependent pieces.
3More precisely, this integral is related to a delta function [15]. A change of coordinates relates

Z

q

1
q3+2⌫1

=
i

2⇡2
�(⌫1) . (2.8)

To get the consistent results one can use this equation. In practice, there is a much simpler way, as described in

the main text.

6

with

Figure 2. Two contributions to the one-loop power spectrum calculated using direct numerical integration
and eq. (2.23) and eq. (2.31) as described in the main text. Both plots are produced using ⌫ = �0.3,
N = 150, kmin = 10�5 hMpc�1 and kmax = 5 hMpc�1. For these values of parameters the sum of two
terms di↵ers from the numerical one-loop power spectrum by less than 0.1% at all scales.

Before turning to results, let us write the explicit formula for P22 diagram. Using (1.1)

and (2.4) we can write the approximation to the P22 diagram in the following way

P̄22(k) = 2
X

m1,m2

cm1 cm2

X

n1,n2

f22(n1, n2) k�2(n1+n2)
Z

q

1

q2⌫1�2n1 |k � q|2⌫2�2n2
. (2.21)

In this expression cm1 and cm2 are the coe�cients in (1.2) and n1 and n2 are integer powers

of q2 and |k � q|2 in the expansion of F 2
2 (q,k � q). Corresponding rational coe�cients in this

expansion are labeled by f22(n1, n2) and they can be read o↵ from (2.4). The complex numbers

⌫1 and ⌫2 are given by

⌫1 = �
1
2(⌫ + i⌘m1) and ⌫2 = �

1
2(⌫ + i⌘m2) . (2.22)

Using the solution for the momentum integral, expression (2.21) can be further simplified and

written in the following way

P̄22(k) = k3
X

m1,m2

cm1k
�2⌫1 · M22(⌫1, ⌫2) · cm2k

�2⌫2 , (2.23)

where the matrix M22(⌫1, ⌫2) is given by

M22(⌫1, ⌫2) =
(3
2 � ⌫12)(

1
2 � ⌫12)[⌫1⌫2(98⌫2

12 � 14⌫12 + 36) � 91⌫2
12 + 3⌫12 + 58]

196 ⌫1(1 + ⌫1)(
1
2 � ⌫1) ⌫2(1 + ⌫2)(

1
2 � ⌫2)

I(⌫1, ⌫2). (2.24)

As we already pointed out, only a single function I(⌫1, ⌫2) is su�cient to calculate the full diagram.

Thanks to the recursion relations (2.18), all terms from the expansion of F2 kernels are encoded

in the ⌫-dependent prefactor in matrix M22(⌫1, ⌫2).

One can use eq. (2.23) to calculate the P22 diagram. The result is shown in Fig. 2. As expected,

the agreement with the usual numerical integration is excellent. An important thing to notice
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Figure 1: One, two and three-loop contributions to the equal-time power spectrum
obtained from a numerical Monte Carlo integration within standard perturbation
theory at z = 0. The linear power spectrum is obtained from the initial power
spectrum from CAMB [20] using the ΛCDM model with WMAP5 parameters.
For the three-loop order, the error bars show an estimate for the numerical error
obtained by multiplying the error output of the CUBA routine Suave by a factor
of two. The relative error is ≤ 0.002 for k ≤ 0.55 h/Mpc. The black diamonds
and grey crosses correspond to two different parametrizations of the absolute loop
momenta (see App. A).

scales. For even larger momentum k, one observes that each loop contri-
bution features the expected behavior (3.2) with a logarithmic enhancement
compared to the linear spectrum. But also in this regime, the loop expansion
appears to be divergent.

The picture might change if one goes to larger redshift z, where the
expansion parameter can be efficiently suppressed since σ2

l ∝ D+(z)2 ∼ (1 +
z)−2. In Figs. 2 and 3 we show some comparisons between our three-loop
SPT results (black lines and diamonds) and N-body simulations (red dots,
Horizon Run 2 [27]) for various redshifts (see App. C for further details). For
large redshift (z ! 1.75) the three-loop contribution may lead to an improved
agreement with the N-body data, while it clearly degrades the agreement
compared to the two-loop at lower redshifts. The same happens for the two-
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Figure 2: Comparison at redshifts z = {0, 0.375, 0.833, 1.75} of SPT up to one
loop (black dashed lines), two loops (black dot-dashed) and three loops (black
diamonds) with N-body results of the Horizon Run 2 [27] (red dots, see App. C).
The black line corresponds to the linear result. We also show the results of Padé
resummation (same styles as for SPT but in blue, see Sec. 4); at z = 0 the blue
and black dashed line lie on top of each other.

loop at even smaller redshifts and at small momenta. This indicates that for
any redshift, adding loop contributions improves the agreement only up to a
certain order, as typically expected for asymptotically converging series.

In general, in such a situation, one expects that the partial sum up to
the smallest term yields the most accurate estimate of the full result, with
a theoretical uncertainty of the order of the smallest term. For a realistic
initial power spectrum, this indicates that the power spectrum at z ! 1 can
be estimated with SPT at most to an accuracy of the order of the two-loop
contribution (e.g. P2−loop/Plin ≃ 6% at z = 0 and k = 0.1 h/Mpc).

As already emphasized, this does not mean that it is in principle impos-
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Figure 2: Comparison at redshifts z = {0, 0.375, 0.833, 1.75} of SPT up to one
loop (black dashed lines), two loops (black dot-dashed) and three loops (black
diamonds) with N-body results of the Horizon Run 2 [27] (red dots, see App. C).
The black line corresponds to the linear result. We also show the results of Padé
resummation (same styles as for SPT but in blue, see Sec. 4); at z = 0 the blue
and black dashed line lie on top of each other.

loop at even smaller redshifts and at small momenta. This indicates that for
any redshift, adding loop contributions improves the agreement only up to a
certain order, as typically expected for asymptotically converging series.

In general, in such a situation, one expects that the partial sum up to
the smallest term yields the most accurate estimate of the full result, with
a theoretical uncertainty of the order of the smallest term. For a realistic
initial power spectrum, this indicates that the power spectrum at z ! 1 can
be estimated with SPT at most to an accuracy of the order of the two-loop
contribution (e.g. P2−loop/Plin ≃ 6% at z = 0 and k = 0.1 h/Mpc).

As already emphasized, this does not mean that it is in principle impos-
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Baryonic Acoustic Osicllations

See Vanina’s (and Marco’s) lectures!
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Figure 12. Comparison between the best fitting model and the BOSS DR12 measurements in the three redshift bins used in this analysis.
The errors on the data points are the diagonal of the corresponding covariance matrix. The red line represents the best fitting model to
the SGC, while the black line shows the best fitting model for the NGC. The SGC best fitting model includes a small discreteness e↵ect
mainly visible at small k. The NGC and SGC have been fit simultaneously, using the same cosmological fitting parameters. However,
the SGC and NGC have a separate amplitude nuisance parameter and di↵erent window functions, which leads to the di↵erence between
the red and black line. The reason for having separate nuisance parameters for NGC and SGC are slight di↵erences in the galaxy sample
selection (see section 2 and Alam et al. 2016). See Table 3 for more details.
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Figure 14. The best fitting models (black solid line) of the isotropic BAO analysis compared to the power spectrum monopole measure-
ments (data points). Both the model and the data have been plotted relative to the smooth model, and the data points for NGC and SGC
have been combined using the corresponding covariance matrices (see appendix B). The left panel shows the pre-reconstruction result,
while the right panel presents the post reconstruction result. Similar plots for the NGC and SGC separately are included in appendix A.
See Table 3 for more details.
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Planck Collaboration: The cosmological legacy of Planck
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Fig. 27. Redshift-distance relation measured by BAO surveys,
compared to the predictions of the ⇤CDM model constrained by
Planck. The grey band centred at unity shows the ±1 and ±2�
confidence regions for the Planck prediction, given the remain-
ing uncertainties in the parameters. This is a percent-level pre-
diction of the distance scale. The BAO points are: 6dFGS, green
star (Beutler et al. 2011); SDSS MGS, purple square (Ross et al.
2015); BOSS DR12, red triangles (Alam et al. 2017); WiggleZ,
blue circles (Kazin et al. 2014); SDSS quasars, red circle
(Ata et al. 2018); and BOSS Ly↵, yellow cross (Bautista et al.
2017).

The BAO method also provides measures of distances along
the line of sight, that is, of the Hubble parameter. The cur-
rent best measurements of the BAO feature comes from BOSS
(Dawson et al. 2013), which has surveyed 18.7 Gpc3 of the low-z
Universe and 150 Gpc3 of the z' 2.5 Universe to provide highly
significant detections of the acoustic feature. Figure 28 shows
the comparison in the DM–H space, and we see that the agree-
ment is excellent. The thin contours show the Planck ⇤CDM
predictions, where the geometric degeneracy is evident. Moving
along this line, !m and h are changing in concert to hold ✓⇤ (al-
most) constant. In Fig. 28 the green points show samples from
the Planck TT+lowE chains, while the red points include the
high-` polarization and lensing data. As more data are added
there is a shift towards slightly lower DM and higher H, in bet-
ter agreement with the BAO results. This is also true for adding
polarization and lensing separately (not shown).

The real power of the BAO data becomes apparent, how-
ever, when we open up the parameter space beyond ⇤CDM.
One of the key degeneracies that enters in these extended pa-
rameter spaces is the angular scaling (often called the “geomet-
ric distance degeneracy”), which means that changes in the pa-
rameters that hold the angular diameter distance to the surface
of last scattering fixed20 are only weakly constrained. By pro-
viding a low-redshift distance determination, the BAO measure-
ments largely break this degeneracy. One example is presented
in Fig. 29, which shows the constraints in the ⌦m–⌦K plane.
With only the primary CMB information, the geometric degen-
eracy allows a wide range of solutions. Including CMB lensing
tightens this somewhat, but the highly precise BAO distances
break the degeneracy almost entirely (a similar e↵ect happens

20Or more generally combinations which change r⇤ and the distance
so as to hold ✓⇤ fixed.

with massive neutrinos, as discussed in Sect. 5.3). It is worthy
of note that the constraint on ⌦K has improved by two orders of
magnitude in under two decades.

Looking at this from the point of view of BAO surveys,
Planck fixes rdrag to 0.2 % (for base ⇤CDM), allowing line-of-
sight BAO measurements to be translated into measures of H(z)
on an absolute scale, which is limited only by our uncertainty
about the high-z Universe:

rdrag h

 
⌦m

0.3

!0.4

= (101.056 ± 0.036) Mpc (68 % CL). (10)

This allows BAO experiments to provide a direct measure of the
expansion rate in physical units.

6.4. Clusters and SZ effects

Planck has had a significant impact on the study of
galaxy clusters using the Sunyaev-Zeldovich e↵ect (SZ;
Sunyaev & Zeldovich 1972, 1980; see Carlstrom et al. 2002
for a review). This has contributed to Planck’s cosmolog-
ical legacy, through the statistical properties of the Planck

SZ catalogues and maps, as well as observations of individ-
ual objects. Examples of the former include studies of clus-
ter scaling relations and profiles (Planck Collaboration X 2011;
Planck Collaboration XI 2011; Planck Collaboration XII 2011;
Planck Collaboration Int. III 2013; Planck Collaboration Int. V
2013; Planck Collaboration Int. XI 2013), while an early ex-
ample of the latter was a study of the physics of gas in the
Coma cluster (Planck Collaboration Int. X 2013). Another ex-
ample was the discovery of an exceptionally luminous and
massive cluster at z' 1 via its SZ e↵ect, an object which
was verified in follow-up XMM-Newton observations (see
Planck Collaboration IX 2011; Planck Collaboration Int. I 2012;
Planck Collaboration Int. IV 2013). Figure 30 shows the Planck

SZ map and its XMM-Newton confirmation, with both im-
ages suggesting a surprisingly relaxed cluster for this epoch
(Planck Collaboration XXVI 2011). More generally, the XMM-
Newton follow up of clusters in Planck’s first SZ catalogue
(Planck Collaboration XXIX 2014) was very successful, with 51
new clusters confirmed, spanning the redshift range 0.09 to 0.97
(Planck Collaboration Int. IV 2013).

The SZ legacy catalogue in Planck Collaboration XXVII
(2016) built on the earlier versions (Planck Collaboration VIII
2011; Planck Collaboration XXIX 2014;
Planck Collaboration XXXII 2015). It contains 1 653 de-
tections, of which 1 203 are confirmed clusters with identified
counterparts in external data sets. It was the first SZ catalogue
with more than 1000 confirmed clusters. New detections, rela-
tive to the 2013 catalogue, are shown in the redshift-mass plane
in Fig. 31; these can be seen to fit well with the completeness
contours of the new survey.

The legacy catalogue enabled the subset of clusters that
were used as a sample for cosmology constraints to be sub-
stantially increased compared with the number used in 2013,
with 439 clusters included in 2015 versus 189 in 2013. A
key constraint that emerges from the 2015 cosmology sample
(Planck Collaboration XXIV 2016) is the result for �8 versus
⌦m, shown in Fig. 32. The coloured contours in that figure re-
fer to di↵erent ways of treating the crucial scaling between the
measured cluster Compton distortion parameter, Y500, and the
cluster mass, M500 (both defined within a radius where the mean
enclosed density is 500 times the critical density). This is a com-
plex procedure, in which numerous possible systematic and sta-

39

Planck 2018

sound horizon from LSS vs. Planck

< 2 % error!!
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Figure 6. The extractor R[P ](k; ↵̄) applied to the PS computed from N-body
simulations (grey area) and to the TRG result described in the text at redshift z = 1
(left column) and at z = 0 (right column). Di↵erent values of the range parameter
↵̄ and of the binning �k are shown. The grey area corresponds to assuming an error
�Pm
Pm

= 1% in each bin. The parameter n in (36) and (37) has been set to n = 0 We
also show, in blue-dashed lines, the e↵ect of the extractor applied to the linear PS.
For visualisation purposes, the same quantity R[P 0,nw](k), where P 0,nw is the smooth
component of the linear PS, has been subtracted from all the di↵erent R[P ](k).

therefore it is not an alternative to reconstruction, but rather, it provides a parameter

independent procedure to extract BAO information from reconstructed data.

As for the broadband part of the PS, we showed that a 1-loop SPT computation

supplemented with just one UV counterterm gives results in agreement with N-body

simulations up to kmax ⇠ 0.4 h/Mpc for z � 0.5, rapidly degrading at lower redshifts.

We have discussed how to systematically improve our approximation, by including higher

order SPT corrections and more correlators between the UV sources and the density

and velocity fields. The use of time-evolution equations considered here is particularly

fit to deal with models beyond ⇤CDM in which the boradband part of the PS carries a

distinctive signature, like cosmologies with massive neutrinos or based on modified GR,

as the scale-dependence of the growth factor can be directly implemented in the linear

evolution matrix in eq. (3).
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Figure 2. First row: Matter CF in real space, for massless neutrinos, and at redshift
z = 0. The right panel is a zoom of the left panel centered at the BAO peak. The
data points are from our N-body simulations; the red dashed, green solid, and blue
solid lines are, respectively, ⇠lin, ⇠(1), and ⇠(2), defined in eq. (17), multiplied by R2.
The black solid (dashed) line at small R2⇠ values in the left panel is the di↵erence (5)
between the CF from the FrankenEmu [18] N-body based emulator and ⇠(1) (and ⇠(2)),
also rescaled by R2. The black solid line in the right panel is the FrankenEmu CF,
times R2. Second row: same as in the first row, but at redshift z = 1.
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The black solid (dashed) line at small R2⇠ values in the left panel is the di↵erence (5)
between the CF from the FrankenEmu [18] N-body based emulator and ⇠(1) (and ⇠(2)),
also rescaled by R2. The black solid line in the right panel is the FrankenEmu CF,
times R2. Second row: same as in the first row, but at redshift z = 1.
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Figure 3. Ratio between the matter real space CF at two di↵erent redshifts, for
massless neutrinos. The top, middle, and bottom curves in the figure are ratios of CF
at z = 0.5, z = 1, z = 2, respectively, divided by the corresponding CF at z = 0. The
data are ratios between our N-body simulations; the red dashed, green solid, and blue
solid lines are ratios between, respectively, ⇠lin, ⇠(1), and ⇠(2), defined in eq. (17). The
black solid lines are ratios between CF obtained from the FrankenEmu emulator.
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Figure 1. A pictoral explanation of how density-field reconstruction can improve the acoustic scale measurement. In each panel, we
show a thin slice of a simulated cosmological density field. (top left) In the early universe, the initial densities are very smooth. We mark
the acoustic feature with a ring of 150 Mpc radius from the central points. A Gaussian with the same rms width as the radial distribution
of the black points from the centroid of the blue points is shown in the inset. (top right) We evolve the particles to the present day, here
by the Zel’dovich approximation (Zel’dovich 1970). The red circle shows the initial radius of the ring, centered on the current centroid of
the blue points. The large-scale velocity field has caused the black points to spread out; this causes the acoustic feature to be broader.
The inset shows the current rms radius of the black points relative to the centroid of the blue points (solid line) compared to the initial
rms (dashed line). (bottom left) As before, but overplotted with the Lagrangian displacement field, smoothed by a 10h�1 Mpc Gaussian
filter. The concept of reconstruction is to estimate this displacement field from the final density field and then move the particles back
to their initial positions. (bottom right) We displace the present-day position of the particles by the opposite of the displacement field
in the previous panel. Because of the smoothing of the displacement field, the result is not uniform. However, the acoustic ring has
been moved substantially closer to the red circle. The inset shows that the new rms radius of the black points (solid), compared to the
initial width (long-dashed) and the uncorrected present-day width (short-dashed). The narrower peak will make it easier to measure the
acoustic scale. Note that the algorithm applied to the data is more complex than was just described, but this figure illustrates the basic
opportunity of reconstruction.

steps of this algorithm below and discuss details specific to
our implementation in subsequent subsections.

(i) Estimate the unreconstructed power spectrum P (k) or
correlation function ⇠(r).

(ii) Estimate the galaxy bias b and the linear growth rate,
f ⌘ d lnD/d ln a ⇠⌦0.55

M (Carroll et al. 1992; Linder 2005),
where D(a) is the linear growth function as a function of
scale factor a and ⌦M is the matter density relative to the
critical density.

(iii) Embed the survey into a larger volume, chosen such
that the boundaries of this larger volume are su�ciently
separated from the survey.

(iv) Gaussian smooth the density field.
(v) Generate a constrained Gaussian realization that

matches the observed density and interpolates over masked
and unobserved regions (§2.3).

(vi) Estimate the displacement field  within the
Zel’dovich approximation (§2.4).

(vii) Shift the galaxies by � . Since linear redshift-
space distortions arise from the same velocity field, we shift
the galaxies by an additional �f( · ŝ)ŝ (where ŝ is the
radial direction). In the limit of linear theory (i.e. large
scales), this term exactly removes redshift-space distortions
(Kaiser 1987; Hamilton 1998; Scoccimarro 2004). Denote
these points by D.

(viii) Construct a sample of points randomly distributed
according to the angular and radial selection function and
shift them by � . Note that we do not correct these for
redshift-space distortions. Denote these points by S.
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Figure 1. A pictoral explanation of how density-field reconstruction can improve the acoustic scale measurement. In each panel, we
show a thin slice of a simulated cosmological density field. (top left) In the early universe, the initial densities are very smooth. We mark
the acoustic feature with a ring of 150 Mpc radius from the central points. A Gaussian with the same rms width as the radial distribution
of the black points from the centroid of the blue points is shown in the inset. (top right) We evolve the particles to the present day, here
by the Zel’dovich approximation (Zel’dovich 1970). The red circle shows the initial radius of the ring, centered on the current centroid of
the blue points. The large-scale velocity field has caused the black points to spread out; this causes the acoustic feature to be broader.
The inset shows the current rms radius of the black points relative to the centroid of the blue points (solid line) compared to the initial
rms (dashed line). (bottom left) As before, but overplotted with the Lagrangian displacement field, smoothed by a 10h�1 Mpc Gaussian
filter. The concept of reconstruction is to estimate this displacement field from the final density field and then move the particles back
to their initial positions. (bottom right) We displace the present-day position of the particles by the opposite of the displacement field
in the previous panel. Because of the smoothing of the displacement field, the result is not uniform. However, the acoustic ring has
been moved substantially closer to the red circle. The inset shows that the new rms radius of the black points (solid), compared to the
initial width (long-dashed) and the uncorrected present-day width (short-dashed). The narrower peak will make it easier to measure the
acoustic scale. Note that the algorithm applied to the data is more complex than was just described, but this figure illustrates the basic
opportunity of reconstruction.
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where D(a) is the linear growth function as a function of
scale factor a and ⌦M is the matter density relative to the
critical density.
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separated from the survey.

(iv) Gaussian smooth the density field.
(v) Generate a constrained Gaussian realization that

matches the observed density and interpolates over masked
and unobserved regions (§2.3).

(vi) Estimate the displacement field  within the
Zel’dovich approximation (§2.4).

(vii) Shift the galaxies by � . Since linear redshift-
space distortions arise from the same velocity field, we shift
the galaxies by an additional �f( · ŝ)ŝ (where ŝ is the
radial direction). In the limit of linear theory (i.e. large
scales), this term exactly removes redshift-space distortions
(Kaiser 1987; Hamilton 1998; Scoccimarro 2004). Denote
these points by D.

(viii) Construct a sample of points randomly distributed
according to the angular and radial selection function and
shift them by � . Note that we do not correct these for
redshift-space distortions. Denote these points by S.
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Different ways to include displacements lead to equivalent results. 
Well understood theoretically. 

Not a nuisance, but a calculable physical effect!!
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The remaining, nonlinear, redshift space distortions e↵ect is modelled, together with

scale dependent bias, by the single pre-factor e�Ak2 . In general, this would be expected

to be a poor approximation, as, for instance, it lacks any µ-dependence. However, since,

as we will see, we will only include monopole data in our BAO analysis, our simple µ-

independent parameterization can be considered as an e↵ective one, after µ-averaging.

The e↵ect of BAO damping by large-scale bulk flows is encoded in the e�k2⌅rs(µ)/�rec

term, where the function ⌅rs(µ) is given by [2]

⌅rs(µ; rbao) =
�
1 + fµ2(2 + f)

�
⌅(rbao)

+ fµ2(µ2 � 1)
1

2⇡2

Z
dq P nw,l(q)j2(qrbao) , (11)

with

⌅(rbao) ⌘
1

6⇡2

Z
dq P nw,l(q; z) (1� j0(q rbao) + 2j2(q rbao)) , (12)

with jn(x)’s the spherical Bessel functions. Typically, the reconstruction reduces the

damping of the BAO of a factor ⇠ 4 [4]. Hence we divide the exponential damping by a

quantity �rec which is equal to 1 for pre-reconstruction data and to 4 for reconstructed

data.

From the PS model above we are going to calculate the multipole moments:

Pl(k; b, A) ⌘
2l + 1

2

Z
dµPmodel(k, µ; b, A)Pl(µ), (13)

where Pl are the Legendre polynomials, and l = 0, 2 correspond, respectively, to the

monopole and quadrupole moment.

We stress again that Eq. (9) does not include any short scale correction term as

those implemented in the TRG approach discussed in [1], or in the E↵ective Field Theory

of the LSS [5]. Here we want to focus on the performance of the Extractor compared

to the standard BAO analysis, as implemented by the BOSS collaboration, and our

main goal is to assess the e↵ect of the reduction in nuisance parameters present in their

analysis.

The BOSS analysis [3] of the monopole data is based on the power spectrum

P (k) = B2 Psm,lin (k)Ffog (k,⌃s)


1 +

✓
Plin (k)

Psm,lin (k)
� 1

◆
e�k2 ⌃2

nl/2

�
. (14)

In this expression, the factor Ffog (k, µ,⌃s) =
1

(1+k2 ⌃2
s/2)

2 is a damping term due to the

non-linear velocity field (“Finger-of-God”). The two power spectra Plin and Psm,lin are,

respectively, the linear power spectrum of the assumed cosmology, and a fit obtained

by adding an Eisenstein & Hu [15] no-Wiggle power spectrum, together with the five

monomial terms [3]
a0,1
k3

+
a0,2
k2

+
a0,3
k

+ a0,4 + a0,5 k . (15)

The BOSS analysis is therefore characterized by 10 parameters (BNGC, BSGC, ↵0,1�5, ↵,

⌃nl, ⌃s), to be compared to the 4 parameters employed in the analysis presented in this

paper (b, ANGC, ASGC, ↵), of which one, b, is completely irrelevant (see Fig. 1 and the

related discussion in the next section.)

BOSS analysis (Beutler et al ’16) 
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nuisance parameters
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Assuming the displacement field is irrotational, the equation above can be solved,

and the the line-of-sight and angular positions of the galaxies are shifted as follows

snew|| = sold|| � (1 + f) ||(s
old) ,

snew? = sold? � ?(s
old) , (8)

where the (1 + f) factor multiplying the displacement along the line of sight aims at

removing the linear component of redshift-space distortions.

The same displacement procedure is applied to a set of randomly distributed

particles. The reconstructed density field are then given by the di↵erence between

the displaced galaxy field and the displaced random field.

Therefore we have, for each multipole and each redshift bin, 2 pre-reconstruction

PS’s (from the NGC and SGC) and 2 post-reconstruction PS’s. In the following we

are going to apply the extractor analysis to these sets of data and compare the results

with those obtained by the analysis performed by the BOSS collaboration using a 10-

parameter fit for the model PS, both for the pre-reconstruction and post-reconstruction

datasets.

4. The model

In [2] we tested the performance of a simple model function to reproduce the extracted

PS obtained from N-Body simulations and found good agreement, both for matter and

for halos, in real and redshift space. This is particularly interesting since the model did

not include any short-scale e↵ects, which are otherwise essential to model the full PS,

and both the scale dependence of RSD and halo bias are encoded in a single exponential

prefactor containing just one extra parameter.

We will use a similar model to analyze BOSS experimental data, namely,

Pmodel(k, µ; b, A) = e�Ak2
 �

b+ µ2fRsd(k)
�2 ⇣

P nw,l(k) + Pw,l(k)e�k2⌅rs(µ)/�rec
⌘

+b2�P nw,1l
�� (k) + 2bµ2f�P nw,1l

�✓ (k) + µ4f 2�P nw,1l
✓✓

�
, (9)

where µ is the cosine of the angle between the wavevector and the line of sight, P nw,l and

P nw,l are, respectively, the smooth and the oscillating components of the linear PS, while

�P nw,1l
ij (k) (i, j = �, ✓) denote the components of the real space 1-loop PS, computed

using the smooth linear one. The smooth PS is obtained by spline interpolating the

linear PS on the points corresponding to nodes of sin(k rbao), and the wiggly PS is then

the di↵erence between the linear PS and the smooth one.

The Rsd(k) term accounts for the removal of large scale redshift space distortions

by the reconstruction procedure discussed in the previous section, Eq. (8), and in the

BOSS analysis the ‘Rec-Iso’ convention of [14] is adopted,

Rsd(k) =

(
1 before reconstruction,

1� e�
k2⌃2

sm
2 after reconstruction .

(10)
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BOSS collaboration

Pre-reconstruction Post-reconstruction

↵ error �2/gdl ↵ error �2/gdl

0.2 < z < 0.5 1.006 0.016 48.5/48 1.000 0.010 43.9/48

0.4 < z < 0.6 1.016 0.017 64.8/48 0.9936 0.0082 32.8/48

0.5 < z < 0.75 0.991 0.019 49.8/48 0.9887 0.0087 47.0/48

Extractor procedure

Pre-reconstruction Post-reconstruction

↵ error �2/gdl ↵ error �2/gdl

0.2 < z < 0.5 1.005 0.007 48/47 1.003 0.006 40/47

0.4 < z < 0.6 1.008 0.007 53/47 1.000 0.006 40/47

0.5 < z < 0.75 0.999 0.007 41/44 0.999 0.006 38/47

Table 4. Results for the parameter ↵ obtained with the standard procedure (BOSS
collaboration, Ref. [3]) and by applying our analysis to BOSS experimental data.
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Performance of Standard PT
P(k, z) = D(z)2P(1)(k) + D(z)4F(1l)(k) + D(z)6F(2l)(k) + ⋯
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Example: 1-loop correction to the density power spectrum:

“P22” “P13”

1 1 1 1 1 1

Linear Power spectrum

linear 1-loop

 0.01

 0.1

 1

 10

 100

 0.001  0.01  0.1  1  10

P(
k,

z=
0)

 [(
h/

M
pc

)-3
]

k [h/Mpc]

Plin
1-loop
2-loop
3-loop kref=k
3-loop log measure

Figure 1: One, two and three-loop contributions to the equal-time power spectrum
obtained from a numerical Monte Carlo integration within standard perturbation
theory at z = 0. The linear power spectrum is obtained from the initial power
spectrum from CAMB [20] using the ΛCDM model with WMAP5 parameters.
For the three-loop order, the error bars show an estimate for the numerical error
obtained by multiplying the error output of the CUBA routine Suave by a factor
of two. The relative error is ≤ 0.002 for k ≤ 0.55 h/Mpc. The black diamonds
and grey crosses correspond to two different parametrizations of the absolute loop
momenta (see App. A).

scales. For even larger momentum k, one observes that each loop contri-
bution features the expected behavior (3.2) with a logarithmic enhancement
compared to the linear spectrum. But also in this regime, the loop expansion
appears to be divergent.

The picture might change if one goes to larger redshift z, where the
expansion parameter can be efficiently suppressed since σ2

l ∝ D+(z)2 ∼ (1 +
z)−2. In Figs. 2 and 3 we show some comparisons between our three-loop
SPT results (black lines and diamonds) and N-body simulations (red dots,
Horizon Run 2 [27]) for various redshifts (see App. C for further details). For
large redshift (z ! 1.75) the three-loop contribution may lead to an improved
agreement with the N-body data, while it clearly degrades the agreement
compared to the two-loop at lower redshifts. The same happens for the two-
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Figure 2: Comparison at redshifts z = {0, 0.375, 0.833, 1.75} of SPT up to one
loop (black dashed lines), two loops (black dot-dashed) and three loops (black
diamonds) with N-body results of the Horizon Run 2 [27] (red dots, see App. C).
The black line corresponds to the linear result. We also show the results of Padé
resummation (same styles as for SPT but in blue, see Sec. 4); at z = 0 the blue
and black dashed line lie on top of each other.

loop at even smaller redshifts and at small momenta. This indicates that for
any redshift, adding loop contributions improves the agreement only up to a
certain order, as typically expected for asymptotically converging series.

In general, in such a situation, one expects that the partial sum up to
the smallest term yields the most accurate estimate of the full result, with
a theoretical uncertainty of the order of the smallest term. For a realistic
initial power spectrum, this indicates that the power spectrum at z ! 1 can
be estimated with SPT at most to an accuracy of the order of the two-loop
contribution (e.g. P2−loop/Plin ≃ 6% at z = 0 and k = 0.1 h/Mpc).

As already emphasized, this does not mean that it is in principle impos-
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Figure 2: Comparison at redshifts z = {0, 0.375, 0.833, 1.75} of SPT up to one
loop (black dashed lines), two loops (black dot-dashed) and three loops (black
diamonds) with N-body results of the Horizon Run 2 [27] (red dots, see App. C).
The black line corresponds to the linear result. We also show the results of Padé
resummation (same styles as for SPT but in blue, see Sec. 4); at z = 0 the blue
and black dashed line lie on top of each other.

loop at even smaller redshifts and at small momenta. This indicates that for
any redshift, adding loop contributions improves the agreement only up to a
certain order, as typically expected for asymptotically converging series.

In general, in such a situation, one expects that the partial sum up to
the smallest term yields the most accurate estimate of the full result, with
a theoretical uncertainty of the order of the smallest term. For a realistic
initial power spectrum, this indicates that the power spectrum at z ! 1 can
be estimated with SPT at most to an accuracy of the order of the two-loop
contribution (e.g. P2−loop/Plin ≃ 6% at z = 0 and k = 0.1 h/Mpc).

As already emphasized, this does not mean that it is in principle impos-
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be observed here is that a large contribution comes from
small wave modes (q < k) suggesting that the growth
of structure is dominated by mode flows from large to
small scales. Not surprisingly, the formation of structure
is more effectively amplified when it is part of a larger
structure than when it contains small scale features.

FIG. 2: Kernel function predicted by SPT (un-binned) up to
one- (thin solid) and two-loop (thick solid) order computed
at k = 0.2hMpc−1 at z = 1. Dashed (dotted) lines show
each of the one- (two-)loop contributions with the legend (ij)
showing the perturbative order of the calculation. We show a
negative sign in the legend when the contribution is negative.
Note that we ignore terms proportional to the Dirac delta
function at k = q, which is meaningful only when binning is
considered.

Such findings are fully in line with expectations from
PT calculations. We show the analytical calculation in
Fig. 2 up to the two-loop level (ignoring at this stage bin-
ning effects). We present the contribution from Pij(k) ∝
⟨δ(i)δ(j)⟩, where δ(i) is the ith-order term in the PT ex-
pansion. The terms in the same loop order cancel at the
IR domain (q < k) due to the extended galilean invari-
ance of the motion equations as shown and analyzed in
e.g., [15–19]. On the other hand, the UV domain is en-
tirely dominated by P13(k) and P15(k) at one and two
loops, respectively. Such terms can be alternatively de-
scribed as the correction to the density propagator. They
have been shown to dominate the behavior of the UV do-
main at any fixed order in SPT.
We then rescale the kernel at various redshifts as

T (k, q) = [K(k, q) −K lin(k, q)]/[qP lin(k)], where K lin is
the trivial linear contribution, and plot them in Fig. 3.
They are compared with the one-loop PT calculation
(solid), which is now time-independent. The simulation
data indeed shows little time evolution at q ! k in strik-
ing agreement with the PT predictions, reproducing the

FIG. 3: Rescaled kernel function, T (k, q) ≡ [K(k, q) −
Klin(k, q)]/[qP lin(k)]. SPT up to the one- and two-loop or-
der are shown by lines, whereas the symbols are measured
from the simulations (see legend for detail). The final wave-
mode bin is fixed to the one centered at k = 0.161 hMpc−1

(see the vertical arrow). Binning is taken into account to the
analytical calculations consistently to the simulations.

expected q dependence and amplitude [29] obtained from
the one-loop calculation and the change of sign one ex-
pects between the IR and the UV domain. The small
but non-negligible z-dependence at k ∼ q is further ac-
counted for by the two-loop calculation (see the figure
legend for line types). Note that at the final wave mode
plotted here (i.e., k = 0.161 hMpc−1), the two-loop SPT
prediction for the nonlinear power spectrum agrees with
simulations within 1% at z " 1 and the agreement gets
worse at lower redshift reaching to ∼ 5% at z = 0 (see
e.g., [5]).

At q " 0.3 hMpc−1 however, the measured kernel func-
tion is observed to be damped compared to perturbation
theory predictions at one or two-loop order. As can be
seen on Fig. 3, the one-loop SPT (solid line) predicts the
kernel function to reach a constant [30]; at the two-loop
order, it is expected to grow in amplitude with time. The
numerical measurements show on the other hand that the
scaled kernel function is strongly damped with decreasing
redshift. It is such that the couplings between scales take
place effectively between modes of similar wavelengths.
This effect is particularly important at late time. At red-
shift zero, the departure between two-loop predictions
and numerical results is striking. Furthermore analysis
of the kernel structure at three and higher loop order (see
e.g., [4]) suggests that SPT calculations, taken at any fi-
nite order, predict an even larger amplitude of the kernel
function in the high q region. It strongly suggests that
this anomaly is genuinely non-perturbative.
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We present detailed simulation measurement of the nonlinear response of the power spectrum
to small variations in the linear counterpart in the context of cosmological large-scale structure
formation. While the mode-coupling structure can be explained to a large extent with the standard
perturbation theory, we show that the coupling of the short-wave modes are however significantly
damped away making them contributing only weakly to the growth of long-wave modes. This is the
first time such an effect is measured. It is of crucial importance for the use of large-scale cosmological
data as probes of fundamental cosmological or physical parameters.

Wide field galaxy surveys are widely considered for un-
veiling the detailed geometrical properties or energy con-
tent of the universe [1]. Large-scale projects, such as the
EUCLID mission [26], are planned in the coming decade,
aiming at the determination of these properties with an
unprecedented accuracy. Such measurements rely to a
large extent on the use of the statistical properties of the
large-scale cosmic structures up to scales entering the
weakly non-linear regime, where the sole linear theory
cannot be used. Such a scientific program could then
only be achieved if the properties of the large-scale cos-
mological structure can be safely predicted either from
numerical simulations or from analytical investigations
for any given cosmological model. In particular it is im-
portant that such observables are shielded from the de-
tails of small scale astrophysics and gas physics at galac-
tic or sub-galactic scales.

One way to reformulate this question is to quantify
how small-scale structures can impact the growth on
large scales as soon as modes are entering the nonlin-
ear regime. Perturbation theory (PT) of the structure
formation is a powerful framework to precisely predict
the nonlinear gravitational dynamics of the cosmic fluid
from the first principle, at least when gravity only is at
play (see [2] for a review). The importance of such meth-
ods has been heightened after the detection of the baryon
acoustic oscillations (BAOs) in the clustering of galaxies
at late times (e.g., [3]), making precise predictions of the
nonlinear matter power spectrum crucially important.

PT calculations show precisely that mode couplings be-
tween different scales are unavoidable. This makes these
calculations in general difficult to develop in a controlled
manner. We propose here to quantify such couplings

with the use of a two-variable kernel function [27], de-
fined as the linear response at wave mode k with respect
to an initial perturbation of the linear power spectrum at
wave mode q. In the context of PT calculations, Ref. [4]
showed progressive broadening of the kernel function as
increasing the PT order, and speculated that a regular-
ization scheme in the UV domain is required to give a re-
alistic estimate of the high-order PT contributions. The
recent paper by [5] also pointed out the unsuccessful con-
vergence of the PT series at late times and proposed a
simple ansatz based on the Padé approximation to sup-
press the strong UV sensitivity seen in the standard PT
(SPT).
If the broadness of the kernel at late times suggested

from PT is true, physics at very small scale can influ-
ence significantly the matter distribution on large scales,
where the acoustic feature is prominent. It also poses
a question to the reliability of simulations, with which
we can follow the evolution of Fourier modes only in a
finite dynamic range. We here present direct measure-
ment of the kernel structure from cosmological N -body
simulations. We show that this allows a direct test of
regularization schemes employed in analytical models.
Definition and methodology.— Here we wish to intro-

duce a well-defined kernel function and investigate it at
fully nonlinear level. We consider the nonlinear power
spectrum as a functional of the linear counterpart, i.e.,
P nl = P nl[P lin], and define the kernel function as its
functional derivative:

K(k, q; z) = q
δP nl(k; z)

δP lin(q; z)
. (1)

We omit the explicit dependence on z from the arguments

Linear Response Function Nishimichi, Bernardeau, Taruya 1411.2970

IR: “Galilean” invariance (EP) 
K(k, q; z) ⇠ q3

UV: SPT over predicts the effect  
of small scales on intermediate ones



Effect of an isolated small density profile ~ r at large distance R(>>r)

r

R

Monopole and dipole cancel (mass 
conservation+momentum conservation): potential 
generated by quadrupole: 

�(R) / r2/R3 � / r2�(R) ! �(k) / k2 P (k) / k4

PT exhibits the k4 decoupling of small scales q (k << q)

However, virialized structures decouple more efficiently than k4 
(Peebles ’80, Baumann et al  1004.2488, Blas et al 1408.2995). 
Highly nonlinear scales decouple.
This effect is missed by the single stream approximation.

The effect of short scales (UV)



✤ Perturbation Theory (even after resummations) fails at short 
scales due to non-convergent series and multistreaming

✤ General idea: take the UV physics from N-body simulations 
and use PT only for the large and intermediate scales

Effective approaches to the UV


