Nonlinear Perturbation Theory for the Large Scale Structure

M. Pietroni - INFN, Padova

XIII Tonale Winter School on Cosmology, 9-13 Dec. 2019

Lecture 4

Outline

- brief review of statistical field theory
- the setup: Eulerian vs Lagrangian, equations of motion
- structure formation in the LineLand (1+1 dimensions)
- Standard Perturbation Theory
- performance and problems of SPT (response functions)
- IR effects: resummations and BAO's
- UV behavior: Effective approaches
- From matter to biased tracers
- Redshift space distortions
- Putting all together (state of the art)
- Beyond PT: consistency relations

Performance of Standard PT

$$
P(k, z)=D(z)^{2} P^{(1)}(k)+D(z)^{4} F^{(1 l)}(k)+D(z)^{6} F^{(2 l)}(k)+\cdots
$$

$$
z=0
$$

linear

MODE COUPLING

Linear Response Function
$K(k, q ; z)=q \frac{\delta P^{\mathrm{nl}}(k ; z)}{\delta P^{\operatorname{lin}}(q ; z)}$

IR: "Galilean" invariance (EP) $K(k, q ; z) \sim q^{3}$

UV: SPT over predicts the effect of small scales on intermediate ones

Nishimichi, Bernardeau, Taruya 1411.2970

Effective approaches to the UV

* Perturbation Theory (even after resummations) fails at short scales due to non-convergent series and multistreaming
* General idea: take the UV physics from N-body simulations and use PT only for the large and intermediate scales
(drop the time dependence)

$$
\begin{aligned}
& \frac{\partial}{\partial \tau} \delta_{R}(\mathbf{x})+\frac{\partial}{\partial x^{i}}\left[\left(1+\delta_{R}(\mathbf{x})\right) v_{R}^{i}(\mathbf{x})\right]=0 \quad \text { continuity eq. } \\
& \frac{\partial}{\partial \tau} v_{R}^{i}(\mathbf{x})+\mathcal{H} v_{R}^{i}(\mathbf{x})+v_{R}^{k}(\mathbf{x}) \frac{\partial}{\partial x^{k}} v_{R}^{i}(\mathbf{x})=-\nabla_{x}^{i} \phi_{R}(\mathbf{x})-J_{\sigma}^{i}(\mathbf{x})-J_{1}^{i}(\mathbf{x}) \\
& \text { Euler eq. } \\
& J_{\sigma}^{i}(\mathbf{x}) \equiv \frac{1}{1+\delta_{R}(\mathbf{x})} \frac{\partial}{\partial x^{k}}\left(\left(1+\delta_{R}(\mathbf{x})\right) \sigma_{R}^{k i}(\mathbf{x})\right) \\
& J_{1}^{i}(\mathbf{x}) \equiv \frac{1}{1+\delta(\mathbf{x})}\left(\left\langle(1+\delta) \nabla^{i} \phi\right\rangle_{R}(\mathbf{x})-\left(1+\delta_{R}\right)(\mathbf{x}) \nabla^{i} \phi_{R}(\mathbf{x})\right)
\end{aligned}
$$

To close the system, we must provide information on the short-distance effects
Buchert, Dominguez, '05, Pueblas Scoccimarro, '09, Baumann et al. '10
M.P., G. Mangano, N. Saviano, M. Viel, 1108.5203, Carrasco, Hertzberg, Senatore,1206.2976

EXACT TIME-EVOLUTION

$$
\begin{aligned}
& \left(\delta_{a b} \partial_{\eta}+\Omega_{a b}\right) \varphi_{b}^{R}(\mathbf{k}, \eta)=e^{\eta} I_{\mathbf{k} ; \mathbf{q}_{1}, \mathbf{q}_{2}} \gamma_{a b c}\left(\mathbf{q}_{1}, \mathbf{q}_{2}\right) \varphi_{b}^{R}\left(\mathbf{q}_{1}, \eta\right) \varphi_{c}^{R}\left(\mathbf{q}_{2}, \eta\right)-h_{a}^{R}(\mathbf{k}, \eta) \\
& P_{a b}^{R}(k)=\left\langle\varphi_{a}^{R}(\mathbf{k}) \varphi_{b}^{R}(-\mathbf{k})\right\rangle^{\prime} \\
& B_{a b c}^{R}\left(q_{1}, q_{2}, q_{3}\right)=\left\langle\varphi_{a}^{R}\left(\mathbf{q}_{1}\right) \varphi_{b}^{R}\left(\mathbf{q}_{2}\right) \varphi_{c}^{R}\left(\mathbf{q}_{3}\right)\right\rangle^{\prime} . \quad h_{a}^{R}(\mathbf{k}, \eta) \equiv-i \frac{k^{i} J_{R}^{i}(\mathbf{k}, \eta)}{\mathcal{H}^{2} f^{2}} e^{-\eta} \delta_{a 2}
\end{aligned}
$$

$$
\begin{aligned}
\partial_{\eta} P_{a b}^{R}(k)=[& -\Omega_{a c} P_{c b}^{R}(k) \\
& \text { Linear PT single stream } \\
& +(a \leftrightarrow b)],
\end{aligned} \quad \text { (vorticity treated perturbatively) }
$$

fully non-linear, equal-time correlators
need:

1) consistent truncations
2) measurement of UV correlators
3) IR resummation

UV INFORMATION

Need input on the UV

$$
\begin{aligned}
J_{\sigma}^{i}(\mathbf{x}) & \equiv \frac{1}{n(\mathbf{x})} \frac{\partial}{\partial x^{k}}\left(n(\mathbf{x}) \sigma^{k i}(\mathbf{x})\right) \\
J_{1}^{i}(\mathbf{x}) & \equiv \frac{1}{n(\mathbf{x})}\left(\left\langle n_{m i c} \nabla^{i} \phi_{m i c}\right\rangle(\mathbf{x})-n(\mathbf{x}) \nabla^{i} \phi(\mathbf{x})\right)
\end{aligned}
$$

Measure them from N-body simulations
(MP, Mangano, Saviano, Viel 1108.5203, Manzotti, Peloso, MP, Viel, Villaescusa-Navarro 1407.1342)
EFToLSS: Expand in terms of long wavelength fields + power law expansion in momentum, with arbitrary coefficients to be fitted (Baumann et al. 1004.2488, Carrasco, Hertzberg, Senatore, 1206.2926)

Compute them from first principles. Shell-crossing!
1+1 dim attempts
(Mc Quinn, White, 1502.07389; Taruya, Colombi, 1701.09088; Rampf, Frisch, 1705.08456; McDonald, Vlah, 1709.02834, Pajer, van der Woude, 1710.01736, MP, 1804.09140)

UV CORRELATORS FROM N-BODY

scale-dependence

Parameterize the correlator as:

$$
\left\langle h_{a}^{R}(\mathbf{k}) \varphi_{b}^{R}(-\mathbf{k})\right\rangle^{\prime}=\alpha^{R}(\eta) \frac{k^{2}}{k_{m}^{2}} P_{1 b}^{R}(k ; \eta) \delta_{a 2}
$$

UV-cutoff dependence
$\alpha / \mathrm{k}_{\mathrm{m}}{ }^{2}\left[\mathrm{~h}^{-2} \mathrm{Mpc}^{2}\right]$

Relation with EFToLSS

$$
\begin{aligned}
& \dot{\rho}_{l}+3 H \rho_{l}+\frac{1}{a} \partial_{i}\left(\rho_{l} v_{l}^{i}\right)=0, \\
& \dot{v}_{l}^{i}+H v_{l}^{i}+\frac{1}{a} v_{l}^{j} \partial_{j} v_{l}^{i}+\frac{1}{a} \partial_{i} \phi_{l}=-\frac{1}{a \rho_{l}} \partial_{j}\left[\tau^{i j}\right]_{\Lambda}^{i}
\end{aligned}
$$

$$
\left\langle\left[\tau^{i i}\right]_{\Lambda} \delta_{i}=p_{b} \delta^{i j}+\rho_{b}\left[c_{s}^{2} \delta_{l} \delta^{i j}-\frac{c_{b v}^{2}}{H a} \delta^{i j} \partial_{k} v_{l}^{k}-\frac{3}{4} \frac{c_{s v}^{2}}{H a}\left(\partial^{j} v_{l}^{i}+\partial^{i} v_{l}^{j}-\frac{2}{3} \delta^{i j} \partial_{k} v_{l}^{k}\right)\right]+\Delta \tau^{i j}+\ldots .\right.
$$ derivative expansion, or expansion in k/k_nl

coefficients should be scale independent, nice results for simple power law linear PS

"MINIMAL" SETTING AND PERFORMANCE

$P^{n w}(k)$ 1-loop SPT + UV source
$P^{w}(k) \quad$ 1-loop SPT + IR resummation+ UV source

Noda, Peloso, M.P. 1705.01475
Broad band: $k_{\max } \sim 0.4 \mathrm{~h} / \mathrm{Mpc} @ \mathrm{z=1} \longrightarrow>\sim 0.1$ @ $\mathrm{z}=0$ (go to 2-loop...)
no fitting on the PS!! (results comparable to EFToLSS @ 1-loop)

BAO residuals: ok at all redshifts next order: 2-loop PT $+\langle J \delta \delta\rangle$ correlators

PERFORMANCE OF THE EFT OF LSS

-linear theory -1-loop EFT ——-loop EFT with $c_{s(1)}^{2}, c_{1}$, and c_{4}
$\begin{array}{ll}---2 \text {-loop SPT } & --2 \text {-loop EFT with } c_{s(1)}^{2} \\ --2 \text {-loop EFT with } c_{s(1)}^{2}, c_{4} & --2 \text {-loop EFT with } c_{s(1)}^{2}\end{array}$ and c_{1}

Foreman, Perrier, Senatore, 1507.0532

Bias

BIAS: distribution of Galaxy and DM Halos is a nonlinear and non local function of the DM one.
$\delta_{g}=\mathcal{F}\left[\delta_{D M},\left(\nabla_{i} \nabla_{j} \Phi\right)^{2}, \cdots\right]$

The Perturbative Bias Expansion

bias parameters
statistical fields describing the galaxies' environment

Effect of a long-wavelength perturbation on the density of local tracers (galaxies, halos...)

Local: 2 derivatives of Φ Higher derivative Stochastic
$K_{i j}=\left(\partial_{i} \partial_{j} / \nabla^{2}-\delta_{i j} / 3\right) \delta \quad$ Tidal field
real-space

redshift-space

large scale: Kaiser

small scale: FoG

IR-UV mixing in redshift space

Real to redshift space mapping:

$$
\begin{array}{r}
\vec{x}_{n} \rightarrow \vec{s}_{n}=\vec{x}_{n}+\frac{p_{n}^{z}}{a \mathcal{H} m} \hat{z} \quad \text { (plane parallel approx.) } \\
\delta_{D}(\vec{k})+\delta_{s}(\vec{k})=\int \frac{d^{3} \vec{x}}{(2 \pi)^{3}} e^{i \vec{k} \cdot \vec{x}}[1+\delta(\vec{x})] \exp \left[i k_{z} v_{z}(\vec{x}) / \mathcal{H}\right] \\
\text { see Scoccimarro'04, }
\end{array}
$$

$$
\begin{aligned}
& \left.\left\langle\delta_{s}(\vec{x}) \delta_{s}(\vec{y})\right\rangle \begin{array}{c}
\text { gets contributions } \\
\text { from terms like }
\end{array}\left\langle\delta(\vec{x}) \delta(\vec{y}) v_{z}^{2}(\vec{y})\right)\right\rangle \sim \underset{\text { even at large }|\vec{x}-\vec{y}|}{\sim} \underset{\sim}{\sim} \quad \text { short scale effect }
\end{aligned}
$$

Large scales feel short ones!!

Problems for PT even at very large scales

Models for RSD

$$
\mu=\hat{k} \cdot \hat{z}
$$

L-Kaiser: $P_{g}^{\mathrm{S}}(k, \mu)=\left(1+f \mu^{2}\right)^{2} P_{g}(k)$
NL-Kaiser:

$$
P_{g}^{\mathrm{S}}(k, \mu)=P_{g, \delta \delta}(k)+2 f \mu^{2} P_{g, \delta \theta}(k)+f^{2} \mu^{4} P_{\theta \theta}(k)
$$

NL-Kaiser +FoG:

$$
\begin{aligned}
& P_{g}^{\mathrm{S}}(k, \mu)=\exp \left(-f^{2} \sigma_{\mathrm{V}}^{2} k^{2} \mu^{2}\right) \\
& \quad \times\left[P_{g, \delta \delta}(k)+2 f \mu^{2} P_{g, \delta \theta}(k)+f^{2} \mu^{4} P_{\theta \theta}(k)\right]
\end{aligned}
$$

NL-Kaiser $+\mathrm{AB}+\mathrm{FoG}$:

(Taruya, Nishimichi, Saito 1006.0699)

$$
\begin{aligned}
& P_{g}^{\mathrm{S}}(k, \mu)=\exp \left(-f^{2} \sigma_{\mathrm{V}}^{2} k^{2} \mu^{2}\right) \\
& \quad \times\left[P_{g, \delta \delta}(k)+2 f \mu^{2} P_{g, \delta \theta}(k)+f^{2} \mu^{4} P_{\theta \theta}(k)\right. \\
& \left.\quad+b_{1}^{3} A(k, \mu ; \beta)+b_{1}^{4} B(k, \mu ; \beta)\right],
\end{aligned}
$$

Zhao et al (BOSS) 1211.3741

Putting all together...

D'Amico et al. 1909.05271 Ivanov et al. 1909.05277
Colas et al. 1909.07951

$$
P_{g, \ell}(k)=P_{g, \ell}^{\text {tree }}(k)+P_{g, \ell}^{1-\text { loop }}(k)+P_{g, \ell}^{\text {noise }}(k)+P_{g, \ell}^{\mathrm{ctr}}(k)
$$

$P_{g}^{\text {tree }}(k, \mu)=\left(b_{1}+f \mu^{2}\right)^{2} P_{\text {lin }}(k)$
RSD linear (Kaiser)

$$
\delta_{g}=b_{1} \delta+\frac{b_{2}}{2} \delta^{2}+b_{\mathcal{G}_{2}} \mathcal{G}_{2}
$$

$P_{g, 0}^{\text {noise }}(k)=P_{\text {shot }}, \quad P_{g, 2}^{\text {noise }}(k)=0$
$P_{\ell}^{\mathrm{ctr}, \mathrm{LO}}(k) \equiv-2 c_{\ell}^{2} k^{2} P_{\operatorname{lin}}(k), \quad \ell=0,2 \quad P^{\mathrm{ctr}, \mathrm{NLO}}(k, \mu) \equiv \tilde{c} k^{4} \mu^{4} f^{4}\left(b_{1}+f \mu^{2}\right)^{2} P_{\operatorname{lin}}(k)$

EFT counterterms in redshift space

RSD beyond kaiser

Putting all together...

D'Amico et al. 1909.05271 Ivanov et al. 1909.05277
Colas et al. 1909.07951

Constraints on (some) cosmological parameters already comparable with Planck

Beyond the perturbative expansion

$$
\langle\Delta(\bar{x}=0, A ; \epsilon)\rangle_{\sigma_{A}} \simeq \sum_{n=1}^{N_{\max }} c_{2 n}(\epsilon) \sigma_{A}^{2 n} \quad \text { SPT }
$$

Consistency relations

Constant gradient displacement: $0\left(9^{\circ}\right)$ contributions

$$
\text { also for } d_{\beta}=d_{\gamma}
$$

angular dependence: $\propto \mu^{2}$

- equal times OK
- depends on the derivative of the corr. function

$$
\propto \mu^{2} \frac{d \log \xi(r)}{d \log r}
$$

see also Baldauf et al. 'Is

Equal-time sqeezed Limit

$\lim _{q / k \rightarrow 0} \frac{B_{\alpha \alpha \alpha}\left(q, k_{+}, k_{-}\right)}{P_{\alpha \alpha}(q) P_{\alpha \alpha}(k)}=-\frac{\mu^{2}}{b_{\alpha}(q)} \frac{d \log P_{\alpha \alpha}(k)}{d \log k}+O\left(\left(\frac{q}{k}\right)^{0}\right)$
unchanged by nonlinearilies:
bias: $b_{\alpha}\left(q ; \tau_{\alpha}\right) \equiv \frac{P_{\alpha \alpha}\left(q ; \tau_{\alpha}, \tau_{\alpha}\right)}{P_{\alpha m}\left(q ; \tau_{\alpha}, \tau_{\alpha}\right)}$

Let's check it

In redshift space

$$
\frac{B^{(l=0)}(q, k)}{P^{\left(l_{q}=0\right)}(q) P^{\left(l_{k}=0\right)}(k)}=-\left[\frac{1}{3 b_{t}}+\frac{b_{t}-1}{9 b_{t}} \beta_{t} \frac{1+\frac{3}{5} \beta_{t}}{1+\frac{2}{3} \beta_{t}+\frac{1}{5} \beta_{t}^{2}}\right] \frac{d \ln P^{\left(l_{k}=0\right)}(k)}{d \ln k}
$$

on large scales:

$$
-\frac{2 \beta_{t}\left[2+b_{t}\left(5+3 \beta_{t}\right)\right]}{225 b_{t}\left(1+\frac{2}{3} \beta_{t}+\frac{1}{5} \beta_{t}^{2}\right)} \underbrace{\frac{P^{\left(l_{k}=2\right)}(k)}{P^{\left(l_{k}=0\right)}(k)} \frac{d \ln P^{\left(l_{k}=2\right)}(k)}{d \ln k}}
$$

$$
\frac{P_{t}^{(2)}(q)}{P_{t}^{(0)}(q)}=\frac{20\left(7 \beta_{t}+3 \beta_{t}^{2}\right)}{7\left(15+10 \beta_{t}+3 \beta_{t}^{2}\right)}
$$

$$
\beta_{t}=f / b_{t}
$$

Consistency relation

Consistency relation PS(quad)/PS(monopole)

Consistency relations

Thank YOU!!

