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Performance of Standard PT
P(k, z) = D(z)2P(1)(k) + D(z)4F(1l)(k) + D(z)6F(2l)(k) + ⋯
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Example: 1-loop correction to the density power spectrum:
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Figure 1: One, two and three-loop contributions to the equal-time power spectrum
obtained from a numerical Monte Carlo integration within standard perturbation
theory at z = 0. The linear power spectrum is obtained from the initial power
spectrum from CAMB [20] using the ΛCDM model with WMAP5 parameters.
For the three-loop order, the error bars show an estimate for the numerical error
obtained by multiplying the error output of the CUBA routine Suave by a factor
of two. The relative error is ≤ 0.002 for k ≤ 0.55 h/Mpc. The black diamonds
and grey crosses correspond to two different parametrizations of the absolute loop
momenta (see App. A).

scales. For even larger momentum k, one observes that each loop contri-
bution features the expected behavior (3.2) with a logarithmic enhancement
compared to the linear spectrum. But also in this regime, the loop expansion
appears to be divergent.

The picture might change if one goes to larger redshift z, where the
expansion parameter can be efficiently suppressed since σ2

l ∝ D+(z)2 ∼ (1 +
z)−2. In Figs. 2 and 3 we show some comparisons between our three-loop
SPT results (black lines and diamonds) and N-body simulations (red dots,
Horizon Run 2 [27]) for various redshifts (see App. C for further details). For
large redshift (z ! 1.75) the three-loop contribution may lead to an improved
agreement with the N-body data, while it clearly degrades the agreement
compared to the two-loop at lower redshifts. The same happens for the two-
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Figure 2: Comparison at redshifts z = {0, 0.375, 0.833, 1.75} of SPT up to one
loop (black dashed lines), two loops (black dot-dashed) and three loops (black
diamonds) with N-body results of the Horizon Run 2 [27] (red dots, see App. C).
The black line corresponds to the linear result. We also show the results of Padé
resummation (same styles as for SPT but in blue, see Sec. 4); at z = 0 the blue
and black dashed line lie on top of each other.

loop at even smaller redshifts and at small momenta. This indicates that for
any redshift, adding loop contributions improves the agreement only up to a
certain order, as typically expected for asymptotically converging series.

In general, in such a situation, one expects that the partial sum up to
the smallest term yields the most accurate estimate of the full result, with
a theoretical uncertainty of the order of the smallest term. For a realistic
initial power spectrum, this indicates that the power spectrum at z ! 1 can
be estimated with SPT at most to an accuracy of the order of the two-loop
contribution (e.g. P2−loop/Plin ≃ 6% at z = 0 and k = 0.1 h/Mpc).

As already emphasized, this does not mean that it is in principle impos-
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Figure 2: Comparison at redshifts z = {0, 0.375, 0.833, 1.75} of SPT up to one
loop (black dashed lines), two loops (black dot-dashed) and three loops (black
diamonds) with N-body results of the Horizon Run 2 [27] (red dots, see App. C).
The black line corresponds to the linear result. We also show the results of Padé
resummation (same styles as for SPT but in blue, see Sec. 4); at z = 0 the blue
and black dashed line lie on top of each other.

loop at even smaller redshifts and at small momenta. This indicates that for
any redshift, adding loop contributions improves the agreement only up to a
certain order, as typically expected for asymptotically converging series.

In general, in such a situation, one expects that the partial sum up to
the smallest term yields the most accurate estimate of the full result, with
a theoretical uncertainty of the order of the smallest term. For a realistic
initial power spectrum, this indicates that the power spectrum at z ! 1 can
be estimated with SPT at most to an accuracy of the order of the two-loop
contribution (e.g. P2−loop/Plin ≃ 6% at z = 0 and k = 0.1 h/Mpc).

As already emphasized, this does not mean that it is in principle impos-
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MODE COUPLING
3

be observed here is that a large contribution comes from
small wave modes (q < k) suggesting that the growth
of structure is dominated by mode flows from large to
small scales. Not surprisingly, the formation of structure
is more effectively amplified when it is part of a larger
structure than when it contains small scale features.

FIG. 2: Kernel function predicted by SPT (un-binned) up to
one- (thin solid) and two-loop (thick solid) order computed
at k = 0.2hMpc−1 at z = 1. Dashed (dotted) lines show
each of the one- (two-)loop contributions with the legend (ij)
showing the perturbative order of the calculation. We show a
negative sign in the legend when the contribution is negative.
Note that we ignore terms proportional to the Dirac delta
function at k = q, which is meaningful only when binning is
considered.

Such findings are fully in line with expectations from
PT calculations. We show the analytical calculation in
Fig. 2 up to the two-loop level (ignoring at this stage bin-
ning effects). We present the contribution from Pij(k) ∝
⟨δ(i)δ(j)⟩, where δ(i) is the ith-order term in the PT ex-
pansion. The terms in the same loop order cancel at the
IR domain (q < k) due to the extended galilean invari-
ance of the motion equations as shown and analyzed in
e.g., [15–19]. On the other hand, the UV domain is en-
tirely dominated by P13(k) and P15(k) at one and two
loops, respectively. Such terms can be alternatively de-
scribed as the correction to the density propagator. They
have been shown to dominate the behavior of the UV do-
main at any fixed order in SPT.
We then rescale the kernel at various redshifts as

T (k, q) = [K(k, q) −K lin(k, q)]/[qP lin(k)], where K lin is
the trivial linear contribution, and plot them in Fig. 3.
They are compared with the one-loop PT calculation
(solid), which is now time-independent. The simulation
data indeed shows little time evolution at q ! k in strik-
ing agreement with the PT predictions, reproducing the

FIG. 3: Rescaled kernel function, T (k, q) ≡ [K(k, q) −
Klin(k, q)]/[qP lin(k)]. SPT up to the one- and two-loop or-
der are shown by lines, whereas the symbols are measured
from the simulations (see legend for detail). The final wave-
mode bin is fixed to the one centered at k = 0.161 hMpc−1

(see the vertical arrow). Binning is taken into account to the
analytical calculations consistently to the simulations.

expected q dependence and amplitude [29] obtained from
the one-loop calculation and the change of sign one ex-
pects between the IR and the UV domain. The small
but non-negligible z-dependence at k ∼ q is further ac-
counted for by the two-loop calculation (see the figure
legend for line types). Note that at the final wave mode
plotted here (i.e., k = 0.161 hMpc−1), the two-loop SPT
prediction for the nonlinear power spectrum agrees with
simulations within 1% at z " 1 and the agreement gets
worse at lower redshift reaching to ∼ 5% at z = 0 (see
e.g., [5]).

At q " 0.3 hMpc−1 however, the measured kernel func-
tion is observed to be damped compared to perturbation
theory predictions at one or two-loop order. As can be
seen on Fig. 3, the one-loop SPT (solid line) predicts the
kernel function to reach a constant [30]; at the two-loop
order, it is expected to grow in amplitude with time. The
numerical measurements show on the other hand that the
scaled kernel function is strongly damped with decreasing
redshift. It is such that the couplings between scales take
place effectively between modes of similar wavelengths.
This effect is particularly important at late time. At red-
shift zero, the departure between two-loop predictions
and numerical results is striking. Furthermore analysis
of the kernel structure at three and higher loop order (see
e.g., [4]) suggests that SPT calculations, taken at any fi-
nite order, predict an even larger amplitude of the kernel
function in the high q region. It strongly suggests that
this anomaly is genuinely non-perturbative.
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Anomalous coupling of the small-scale structures to the large-scale gravitational
growth
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We present detailed simulation measurement of the nonlinear response of the power spectrum
to small variations in the linear counterpart in the context of cosmological large-scale structure
formation. While the mode-coupling structure can be explained to a large extent with the standard
perturbation theory, we show that the coupling of the short-wave modes are however significantly
damped away making them contributing only weakly to the growth of long-wave modes. This is the
first time such an effect is measured. It is of crucial importance for the use of large-scale cosmological
data as probes of fundamental cosmological or physical parameters.

Wide field galaxy surveys are widely considered for un-
veiling the detailed geometrical properties or energy con-
tent of the universe [1]. Large-scale projects, such as the
EUCLID mission [26], are planned in the coming decade,
aiming at the determination of these properties with an
unprecedented accuracy. Such measurements rely to a
large extent on the use of the statistical properties of the
large-scale cosmic structures up to scales entering the
weakly non-linear regime, where the sole linear theory
cannot be used. Such a scientific program could then
only be achieved if the properties of the large-scale cos-
mological structure can be safely predicted either from
numerical simulations or from analytical investigations
for any given cosmological model. In particular it is im-
portant that such observables are shielded from the de-
tails of small scale astrophysics and gas physics at galac-
tic or sub-galactic scales.

One way to reformulate this question is to quantify
how small-scale structures can impact the growth on
large scales as soon as modes are entering the nonlin-
ear regime. Perturbation theory (PT) of the structure
formation is a powerful framework to precisely predict
the nonlinear gravitational dynamics of the cosmic fluid
from the first principle, at least when gravity only is at
play (see [2] for a review). The importance of such meth-
ods has been heightened after the detection of the baryon
acoustic oscillations (BAOs) in the clustering of galaxies
at late times (e.g., [3]), making precise predictions of the
nonlinear matter power spectrum crucially important.

PT calculations show precisely that mode couplings be-
tween different scales are unavoidable. This makes these
calculations in general difficult to develop in a controlled
manner. We propose here to quantify such couplings

with the use of a two-variable kernel function [27], de-
fined as the linear response at wave mode k with respect
to an initial perturbation of the linear power spectrum at
wave mode q. In the context of PT calculations, Ref. [4]
showed progressive broadening of the kernel function as
increasing the PT order, and speculated that a regular-
ization scheme in the UV domain is required to give a re-
alistic estimate of the high-order PT contributions. The
recent paper by [5] also pointed out the unsuccessful con-
vergence of the PT series at late times and proposed a
simple ansatz based on the Padé approximation to sup-
press the strong UV sensitivity seen in the standard PT
(SPT).
If the broadness of the kernel at late times suggested

from PT is true, physics at very small scale can influ-
ence significantly the matter distribution on large scales,
where the acoustic feature is prominent. It also poses
a question to the reliability of simulations, with which
we can follow the evolution of Fourier modes only in a
finite dynamic range. We here present direct measure-
ment of the kernel structure from cosmological N -body
simulations. We show that this allows a direct test of
regularization schemes employed in analytical models.
Definition and methodology.— Here we wish to intro-

duce a well-defined kernel function and investigate it at
fully nonlinear level. We consider the nonlinear power
spectrum as a functional of the linear counterpart, i.e.,
P nl = P nl[P lin], and define the kernel function as its
functional derivative:

K(k, q; z) = q
δP nl(k; z)

δP lin(q; z)
. (1)

We omit the explicit dependence on z from the arguments

Linear Response Function Nishimichi, Bernardeau, Taruya 1411.2970

IR: “Galilean” invariance (EP) 
K(k, q; z) ⇠ q3

UV: SPT over predicts the effect  
of small scales on intermediate ones



✤ Perturbation Theory (even after resummations) fails at short 
scales due to non-convergent series and multistreaming

✤ General idea: take the UV physics from N-body simulations 
and use PT only for the large and intermediate scales

Effective approaches to the UV
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EXACT TIME-EVOLUTION
A Robust BAO Extractor 5

Applying the equation of motion (1) to the (equal-time) PS,
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where we have omitted the ⌘-dependence, and where the bispectrum is given by

B
R
abc(q1, q2, q3) = h'

R
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R
b (q2)'

R
c (q3)i

0
. (13)

Before proceeding, we emphasize that the only approximation in the equation above

is in the way we deal with the vorticity of the coarse-grained velocity field. This has two

components: a microscopic one, related to UV scales smaller than R, and one induced

by the coarse-graining procedure itself. While the first one is completely included in

the source terms hR
a , we deal with the second one at a perturbative level. While in this

section we have set the second vorticity component to zero from the beginning, one can

show, using the methods of [9], that including it perturbatively would give exactly the

same equations as those considered in the next sections. The e↵ect of vorticity on the

PS was investigated in [21], where it was found to be negligible at all scales and redshifts

of interest.

No other approximation has been imposed so far. In particular, we are not assuming

the single stream approximation, as it is usually done in SPT and other semi-analytic

methods. Eq. (1), and its PS counterpart, eq. (12), contain all the relevant physics:

the e↵ect of the UV scales on the intermediate ones, through the source h
R
a , the mode-

coupling between the intermediate scales, through the vertex functions, and the IR

displacements in the terms containing the vertex (7) for q1 ⌧ k. In the following, we

will discuss how to deal with all these e↵ects.

3. UV e↵ects

The source term h
R
a is responsible for all deviations from the single stream approximation

and all the nonlinear e↵ects occurring at small scales. It is therefore cleaner to consider

the subtracted PS,

�P
R
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R
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ab (k) , (14)

where P
R,ss
ab (k) is the PS computed in the single stream approximation. It solves an

equation analogous to (12), in which all the quantities, including the hh
R
a '

R
b i

0 correlator

are obtained in the single stream approximation, in practice, by considering SPT or

other approximation schemes at some finite order. This correlator vanishes in the R ! 0

limit while its value at nonvanishing R takes into account all nonlinear e↵ects due to

modes q >
⇠ 1/R in the single stream approximation, to be subtracted from the fully
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R
bcd(k, p1, p2) � hh

R
a (k)'

R
b (�k)i0

+ (a $ b)

�
, (12)

where we have omitted the ⌘-dependence, and where the bispectrum is given by

B
R
abc(q1, q2, q3) = h'

R
a (q1)'

R
b (q2)'

R
c (q3)i

0
. (13)

Before proceeding, we emphasize that the only approximation in the equation above

is in the way we deal with the vorticity of the coarse-grained velocity field. This has two

components: a microscopic one, related to UV scales smaller than R, and one induced

by the coarse-graining procedure itself. While the first one is completely included in

the source terms hR
a , we deal with the second one at a perturbative level. While in this

section we have set the second vorticity component to zero from the beginning, one can

show, using the methods of [9], that including it perturbatively would give exactly the

same equations as those considered in the next sections. The e↵ect of vorticity on the

PS was investigated in [21], where it was found to be negligible at all scales and redshifts

of interest.

No other approximation has been imposed so far. In particular, we are not assuming

the single stream approximation, as it is usually done in SPT and other semi-analytic

methods. Eq. (1), and its PS counterpart, eq. (12), contain all the relevant physics:

the e↵ect of the UV scales on the intermediate ones, through the source h
R
a , the mode-

coupling between the intermediate scales, through the vertex functions, and the IR

displacements in the terms containing the vertex (7) for q1 ⌧ k. In the following, we

will discuss how to deal with all these e↵ects.

3. UV e↵ects

The source term h
R
a is responsible for all deviations from the single stream approximation

and all the nonlinear e↵ects occurring at small scales. It is therefore cleaner to consider

the subtracted PS,

�P
R
ab(k) ⌘ P

R
ab(k) � P

R,ss
ab (k) , (14)

where P
R,ss
ab (k) is the PS computed in the single stream approximation. It solves an

equation analogous to (12), in which all the quantities, including the hh
R
a '

R
b i

0 correlator

are obtained in the single stream approximation, in practice, by considering SPT or

other approximation schemes at some finite order. This correlator vanishes in the R ! 0

limit while its value at nonvanishing R takes into account all nonlinear e↵ects due to

modes q >
⇠ 1/R in the single stream approximation, to be subtracted from the fully
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[�]R(x, ⌘) and the divergence of [(1+�)vi]R(x, ⌘)/[1+�]R(x, ⌘), respectively, where [· · ·]R
indicates filtering up to some scale R (see sect. 3 and refs. [8, 9] for details).

The left hand side of this relation is the linearized part of the equation for the two

dynamical modes, and it is characterized by the matrix

⌦ =

 
1 �1

�
3
2
⌦m
f2

3
2
⌦m
f2

!
. (3)

The first term at the right hand side of eq. (1) encodes the mode-coupling between the

fields. The only nonvanishing components of the vertex functions are

�121 (p,q) =
(p+ q) · p

2p2
, �112 (q,p) = �121 (p,q) , �222 =

(p+ q)2 p · q

2p2q2
. (4)

The mode-coupling term can also be written as

e
⌘
�abc(q1,q2)'

R
b (q1, ⌘)'

R
c (q2, ⌘) = e

⌘
�a2 �̃(q1,q2)'

R
2 (q1, ⌘)'

R
2 (q2, ⌘)

� ik
j v̄

j
R(q1)

Hf
'
R
a (q2, ⌘) , (5)

with

�̃(q1,q2) =
(q1 · q2)2

q21q
2
2

� 1 . (6)

When q1 ⌧ k ' q2 the second term at the RHS of (5) singles out the leading

contributions to the mode-coupling induced by long (and time-dependent) velocity

modes, whose form is dictated by the Galilean invariance of the system [19, 17, 20].

Expressing the velocity through its divergence, it gives the (formally) IR divergent term

e
⌘k · q1

q21

'
R
2 (q1, ⌘)'

R
a (q2, ⌘) , (7)

where we have used the definition (2). In sect. 4 we will discuss the resummation of

these e↵ects at all orders. On the other hand, the residual vertex function, eq. (6),

amounts to cos(✓12)2 � 1, where ✓12 is the angle between q1 and q2, and therefore it is

never divergent, and moreover vanishes for k = q1 + q2 ! 0.

The last term on the right hand side of eq. (1) is the contribution from the short

modes that have been integrated out in the coarse-graining procedure [8, 9],

h
R
a (k, ⌘) ⌘ �i

k
i
J
i
R(k, ⌘)

H2f 2
e
�⌘
�a2 , (8)

where the UV source J
i
R(k, ⌘) is the Fourier transformed of

J
i
R(x, ⌘) = J

i
1,R(x, ⌘) + J

i
�,R(x, ⌘) , (9)

which depend on the gravitational potential � and the velocity dispersion �
ik
R ,

J
i
1,R(x, ⌘) =

1

[1 + �]R(x, ⌘)
[(1 + �)ri

�]R(x, ⌘) � r
i[�]R(x, ⌘) ,

J
i
�,R(x, ⌘) =

1

[1 + �]R(x, ⌘)

@

@xk

⇥
[1 + �]R(x, ⌘)�

ik
R (x, ⌘)

⇤
. (10)

A Robust BAO Extractor 5

Applying the equation of motion (1) to the (equal-time) PS,

P
R
ab(k) = h'

R
a (k)'

R
b (�k)i0 , (11)

– where the prime indicates that we have divided by (2⇡)3 times the overall momentum

delta function – gives

@⌘P
R
ab(k) =


� ⌦acP

R
cb(k) + e

⌘
Ik;p1,p2�acd(p1,p2)B

R
bcd(k, p1, p2) � hh

R
a (k)'

R
b (�k)i0

+ (a $ b)

�
, (12)

where we have omitted the ⌘-dependence, and where the bispectrum is given by

B
R
abc(q1, q2, q3) = h'

R
a (q1)'

R
b (q2)'

R
c (q3)i

0
. (13)

Before proceeding, we emphasize that the only approximation in the equation above

is in the way we deal with the vorticity of the coarse-grained velocity field. This has two

components: a microscopic one, related to UV scales smaller than R, and one induced

by the coarse-graining procedure itself. While the first one is completely included in

the source terms hR
a , we deal with the second one at a perturbative level. While in this

section we have set the second vorticity component to zero from the beginning, one can

show, using the methods of [9], that including it perturbatively would give exactly the

same equations as those considered in the next sections. The e↵ect of vorticity on the

PS was investigated in [21], where it was found to be negligible at all scales and redshifts

of interest.

No other approximation has been imposed so far. In particular, we are not assuming

the single stream approximation, as it is usually done in SPT and other semi-analytic

methods. Eq. (1), and its PS counterpart, eq. (12), contain all the relevant physics:

the e↵ect of the UV scales on the intermediate ones, through the source h
R
a , the mode-

coupling between the intermediate scales, through the vertex functions, and the IR

displacements in the terms containing the vertex (7) for q1 ⌧ k. In the following, we

will discuss how to deal with all these e↵ects.

3. UV e↵ects

The source term h
R
a is responsible for all deviations from the single stream approximation

and all the nonlinear e↵ects occurring at small scales. It is therefore cleaner to consider

the subtracted PS,

�P
R
ab(k) ⌘ P

R
ab(k) � P

R,ss
ab (k) , (14)

where P
R,ss
ab (k) is the PS computed in the single stream approximation. It solves an

equation analogous to (12), in which all the quantities, including the hh
R
a '

R
b i

0 correlator

are obtained in the single stream approximation, in practice, by considering SPT or

other approximation schemes at some finite order. This correlator vanishes in the R ! 0

limit while its value at nonvanishing R takes into account all nonlinear e↵ects due to

modes q >
⇠ 1/R in the single stream approximation, to be subtracted from the fully

fully non-linear, equal-time correlators 

need: 
1) consistent truncations 
2) measurement of UV correlators 
3) IR resummation

Linear PT single stream

(vorticity treated perturbatively)

(�ab@⌘ + ⌦ab)'
R
b (k, ⌘) = e⌘Ik;q1,q2�abc(q1,q2)'

R
b (q1, ⌘)'

R
c (q2, ⌘)� hR

a (k, ⌘)
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Figure 1. Dependence on the CG cuto↵ scale R of the coe�cient ↵R

k2
m

(blue curve),
↵R,ss

k2
m

(green curve), and of their di↵erence �↵
k2
m

(orange curve). The coe�cients are
obtained from b = 1 in eq. (18), for k = 0.1h/Mpc and at z = 0. As discussed
in the text, the di↵erence exhibits a much smaller dependence on the cut-o↵ scale.

Right panel: Scale dependence of k2 �↵(z0)
k2
m

for three di↵erent values of the cut-o↵ scale

R. The dotted curve is the theoretical prediction k2 times a z�dependent coe�cient,
obtained as explained in Appendix A.

source terms, eq. (10), is expanded in terms of the linear filtered fields, and therefore

the coe�cients of this expansion are obtained from the cross-correlator of the sources

with the linear fields. Here, on the other hand, the relevant cross-correlators involve

the sources and the nonlinear fields '
R
a , and therefore include e↵ects, like short scale

displacements and source-source correlators ( hh
R
a h

R
b i

0, where the second h
R
b is contained

in the nonlinear evolution of the '
R
b field) which are not included at 1-loop order in

EFToLSS. Moreover, we will directly measure these sources, and the coe�cient �↵(⌘),

from N-body simulation and then include the result into our evolution equations for the

PS. While this procedure can be followed also in the EFToLSS, more often, in practical

applications, one first derives an expression for the PS containing the “sound speed”

and other counterterms as parameters to be fitted from the PS measured in simulations.

In doing so, the physical meaning of these counterterms is less transparent, and the

amount of “overfitting”, in order to get the PS right, is di�cult to estimate.

In summary, we can choose R in the plateau region, or equivalently, take the formal

R ! 0 limit, and consider the evolution equation

@⌘�Pab(k; ⌘) =


� ⌦ac �Pcb(k; ⌘)

� �↵(⌘)
k
2

k2
m

h
P

1�loop
1b (k; ⌘) +�P1b(k; ⌘)

i
�a2 + (a $ b)

�
. (20)

In fig. 2 we show the ratios between eq. (17) (orange line) and the PS computed with

the Coyote interpolator of N-body simulations [23]. The agreement clearly improves over

the 1-loop SPT result (blue line) showing that the UV correction represented by the

h
R
a sources plays a decisive role, already at the lowest order considered here, namely,

correcting the UV of the 1-loop PS. At k = 0.1hMpc�1, the source correlator modifies

the PS by ' �0.6% at z = 1, by ' �1.1% at z = 0.5, and by ' �1.8% at z = 0.

The agreement in the PS shape degrades at low redshifts, where higher loop orders

R-independent plateau

UV-cutoff dependence
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source terms, eq. (10), is expanded in terms of the linear filtered fields, and therefore

the coe�cients of this expansion are obtained from the cross-correlator of the sources

with the linear fields. Here, on the other hand, the relevant cross-correlators involve

the sources and the nonlinear fields '
R
a , and therefore include e↵ects, like short scale

displacements and source-source correlators ( hh
R
a h

R
b i

0, where the second h
R
b is contained

in the nonlinear evolution of the '
R
b field) which are not included at 1-loop order in

EFToLSS. Moreover, we will directly measure these sources, and the coe�cient �↵(⌘),

from N-body simulation and then include the result into our evolution equations for the

PS. While this procedure can be followed also in the EFToLSS, more often, in practical

applications, one first derives an expression for the PS containing the “sound speed”

and other counterterms as parameters to be fitted from the PS measured in simulations.

In doing so, the physical meaning of these counterterms is less transparent, and the

amount of “overfitting”, in order to get the PS right, is di�cult to estimate.

In summary, we can choose R in the plateau region, or equivalently, take the formal

R ! 0 limit, and consider the evolution equation

@⌘�Pab(k; ⌘) =


� ⌦ac �Pcb(k; ⌘)

� �↵(⌘)
k
2

k2
m

h
P

1�loop
1b (k; ⌘) +�P1b(k; ⌘)

i
�a2 + (a $ b)

�
. (20)

In fig. 2 we show the ratios between eq. (17) (orange line) and the PS computed with

the Coyote interpolator of N-body simulations [23]. The agreement clearly improves over

the 1-loop SPT result (blue line) showing that the UV correction represented by the

h
R
a sources plays a decisive role, already at the lowest order considered here, namely,

correcting the UV of the 1-loop PS. At k = 0.1hMpc�1, the source correlator modifies

the PS by ' �0.6% at z = 1, by ' �1.1% at z = 0.5, and by ' �1.8% at z = 0.

The agreement in the PS shape degrades at low redshifts, where higher loop orders

scale-dependence
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where P
R,1�loop
ab (k) is the PS computed at 1-loop SPT with the linear PS filtered at the

scale R, while �P
R,�1loop
ab (k) is obtained from eq. (15) with �B

R
bcd(k, p1, p2) = 0 and

�hh
R
a (k)'

R
b (�k)i0 subtracted at 1-loop.

In order to go to next order, one has to take into account the 2-loop PS and include

eq. (16), with �T
R = 0 and the three point correlator hh

R
a '

R
b1'

R
b2i

0 subtracted at 1-loop

order.

As we anticipated above, the total PS, eq. (17), should not depend on the coarse

graining scale R apart from an overall dependence on the filter function. For instance,

the density-density PS should depend on R only through a W [kR]2 factor, where W [kR]

is the filter function in Fourier space. The same holds for the PS computed in the single

stream approximation at a finite loop order (see [9] for a 1-loop check). Therefore, one

has to check that no spurious R-dependence is induced by the di↵erence between the

source correlator measured in simulations and that computed in SPT. Indeed, each of

them, taken separately, has a strong R-dependence, as shown in the left panel of fig. 1,

where we use the parameterization

hh
R
a (k)'

R
b (�k)i0 = ↵

R(⌘)
k
2

k2
m

P
R
1b(k; ⌘) �a2 , (18)

and we plot the quantities ↵
R(⌘), ↵

R,ss(⌘), and the di↵erence between the two (for

b = 1). The simulations we use were presented already in [9], see Appendix A

for details. They are based on the TreePM code GADGET-II [22]. They follow

the evolution, until z = 0, of npart = 5123 CDM particles within a periodic box

of Lbox = 512h�1Mpc comoving. The initial conditions were generated at z = 99

by displacing the positions of the CDM particles, that were initially set in a regular

cubic grid, using the Zel’dovich approximation. We assumed the “REF” cosmological

parameters of [9], namely, ⌦m = 0.271, ⌦b = 0.045, ⌦⇤ = 0.729, h = 0.703, ns = 0.966,

and As = 2.42 ⇥ 10�9.

As we see, for the scales of interest, the R-dependence of the correlator measured

in N-body simulations is mostly cancelled by the perturbative one already at 1-loop, so

that a R-independent function,

�↵(⌘) = ↵
R(⌘) � ↵

R,ss(⌘) , (19)

can be defined. The residual R-dependence, is given by two contributions: nonlinear

e↵ects from scales q >
⇠ 1/R not captured by the 1-loop subtraction, and non-perturbative

(that is, beyond single-stream) e↵ects from scales q <
⇠ 1/R. The magnitude of these

e↵ects decreases with the external momentum k, and, as we see from this plot, they are

clearly subdominant for k in the BAO range of scales. The complementary information

to the left panel of Fig. 1 is given in the right panel of the figure, where the scale-

dependence of the ratio between the correlator and the PS is given, and the k
2

dependence clearly emerges.

Notice that the �↵(⌘) function bears some analogies with the sound speed

coe�cient in the EFToLSS [11], however, with some key di↵erences, that we now

outline. First of all, the stress tensor in [11], whose divergence gives basically our

Parameterize the correlator as:

nonlinear PS

k
<latexit sha1_base64="UTnt0rBvYcGAorJ6bC48zafUfuk="></latexit>

2⇡/R
<latexit sha1_base64="5e2hojtp7ihsLRLhWR0LrSVZjPM="></latexit>
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creating in this way a set of coupled di↵erential equations known as Boltzmann hierarchy.
As we will explain in more detail later, it will be su�cient for the purposes this paper to
stop at the first two moments (one-loop approximation). The first two moments will give the
continuity and momentum equations in the approximation in which the fluid is described by
the Navier-Stokes approximation, with the addition of a stochastic term. We obtain

⇢̇l + 3H⇢l +
1

a
@i(⇢lv

i

l
) = 0 , (18)

v̇
i

l
+ Hv

i

l
+

1

a
v
j

l
@jv

i

l
+

1

a
@i�l = � 1

a⇢l

@j

⇥
⌧
ij
⇤
⇤

. (19)

Let us define the various quantities that enter in these equations. We define the long wave-
length velocity field as the ratio of the momentum and the density

v
i

l
=

⇡
i

l

⇢l

. (20)

The right hand side of the momentum equation (19) contains the divergence of an e↵ective
stress tensor which is induced by the short wavelength fluctuations. This is given by

⇥
⌧
ij
⇤
⇤

= 
ij

l
+ �ij

l
, (21)

where  and � correspond to ‘kinetically-induced’ and ‘gravitationally-induced’ parts:


ij

l
= �

ij

l
� ⇢lv

i

l
v
j

l
, (22)

�ij

l
= � 1

8⇡Ga2

⇥
w

kk

l
�
ij � 2wij

l
� @k�l@

k
�l�

ij + 2@i
�l@

j
�l

⇤
,

where

w
ij

l
(~x) =

Z
d
3
x
0
W⇤(~x � ~x

0)

"
@
i
�(~x0)@j

�(~x0) �
X

n

@
i
�n(~x

0)@j
�n(~x

0)

#
. (23)

Note that we have subtracted out the self term from w
ij

l
, as necessary when passing from

the continuous to the discrete description in the Newtonian approximation, and used that
@
2
� = 4⇡Ga

2(⇢ � ⇢b) and @
2
�l = 4⇡Ga

2(⇢l � ⇢b) to express �l in terms of � and �l. In the
limit in which there are no short wavelength fluctuations, and ⇤ ! 1, l and �l vanish.
In App. A we provide the above expression written just in terms of the short wavelength
fluctuations.

2.3 Integrating out UV Physics

The e↵ective stress tensor that we have identified is explicitly dependent on the short wave-
length fluctuations. These are very large, strongly coupled, and therefore impossible to treat
within the e↵ective theory. When we compute correlation functions of long wavelength fluctu-
ations, we are taking expectation values. Since short wavelength fluctuations are not observed
directly, we can take the expectation value over their values. This is the classical field the-
ory analog of the operation of ‘integrating out’ the UV degrees of freedom in quantum field

8

Relation with EFToLSS

theory, now applied to classical field theory. The long wavelength perturbations will a↵ect
the result of the expectation value of the short modes, through, e.g., tidal like e↵ects. This
means that the expectation value will depend on the long modes. In practice, we take the
expectation value on a long wavelength background. The resulting function depends only on
long wavelength fluctuations as degrees of freedom. In this way, we have defined an e↵ective
theory that contains only long wavelength fluctuations. Since long wavelength fluctuations
are perturbatively small, we can Taylor expand in the size of the long wavelength fluctuations.
Schematically we have

h
⇥
⌧
ij
⇤
⇤
i�l = h

⇥
⌧
ij
⇤
⇤
i0 +

@h[⌧ ij]⇤i�l
@�l

����
0

�l + . . . . (24)

For the precision we pursue in the rest of the paper, we will stop at linear level in the
long wavelength fluctuations, though nothing stops us from going to higher order. By the
symmetries of the problem, the resulting stress tensor must take the following form

h
⇥
⌧
ij
⇤
⇤
i�l = pb�

ij + ⇢b


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2
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� 2
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�
ij
@kv

k

l

◆�
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(25)
This is the stress tensor of an imperfect fluid. pb is the background pressure that is induced
by short distance inhomogeneities even in the absence of long wavelength fluctuations. c

2
s

is
the speed of sounds of the fluctuations: �p = c

2
s
�⇢. cbv and cbv are the coe�cients for the

bulk ⇣ and the shear ⌘ viscosity respectively, with units of velocity. They are related to ⌘

and ⇣ by the relation ⌘ = 3⇢bc
2
sv

/(4H), ⇣ = ⇢bc
2
bv

/H . �⌧
ij represents a stochastic term, that

takes into account the di↵erence between the actual value of ⌧
ij in a given realization and

its expectation value 1. We will come back to this term shortly, but it is worth noting that
neglecting this term in the above equations reproduces the familiar Navier-Stokes equations.

Finally, the ellipses (. . .) represent terms that are either higher order in �l, or higher
order on derivatives of �l. Indeed, higher derivative terms will be in general suppressed by
k/kNL ⌧ 1, and, as typical in e↵ective field theories, we take a derivative expansion in those.
Astrophysically, these terms would corresponds to the e↵ects induced by a sort of higher-
derivative tidal tensor. Once we expand in derivatives of the long wavelength fluctuations,
we take the parameters in (25) to be spatially independent, but time dependent.

The coe�cient �pb, cs, csb, csv are determined by the UV physics and by our smoothing
cuto↵ ⇤, and are not predictable within the e↵ective theory. They must be measured from
either N -body simulations, or fit directly to observations. This is akin to what happens
in the Chiral Lagrangian for parameters that can be measured in experiments or in lattice
simulations, such as F⇡. We first define the correlation functions that will allow us to extract
these parameters from small N -body simulations.

1For the readers familiar with the in-in formalism, this term will take into account the cut-in-the-middle
one-loop diagrams [26].

9

derivative expansion, or expansion in k/k_nl

J i
1 + J i

�

coefficients should be scale independent, nice 
results for simple power law linear PS

Baumann et al  1004.2488
Carrasco et al 1206.2926

…



“MINIMAL” SETTING AND PERFORMANCE

1-loop SPT + UV sourcePnw(k)

Pw(k) 1-loop SPT + IR resummation+ UV source
A Robust BAO Extractor 9
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Figure 2. PS from di↵erent computational schemes divided by the Coyote PS. The
blue curve is the 1-loop SPT result. The orange curve is obtained from the UV-
improved ETRG system (20). The green curve is the UV- and IR-improved result
(33). The di↵erent panels correspond to di↵erent redshifts. The UV-improved curve
performs substantially better than the SPT result, however it is still does not properly
reproduces the BAO oscillations, which are instead well reproduced by the UV- and
IR-improved result. The horizontal dashed lines show the band for which our results
di↵er less than ±1% from the Coyote PS.

should be taken into account along the lines discussed below eq. (16). However, in

the following, we focus our attention on the residual BAO oscillations exhibited by the

orange lines, which indicate that only improving the UV e↵ects does not account for the

BAO damping well enough. In the next section we will discuss how to deal with this

issue.

4. IR resummation and BAO wiggles

The damping of the BAO wiggles in the PS, and of the corresponding peak in the

correlation function is mainly caused by random long range displacements [24]. It is

well known that such e↵ects are badly reproduced in SPT at any finite order, while they

are much better taken into account by the Zel’dovich approximation, which provides a

resummation at all SPT orders (see for instance, [25]). In our approach, the e↵ect of

these long range displacements on an intermediate scale k are encoded in the last term

at the RHS of eq. (5) when the momentum of the velocity field is q1 ⌧ k. We will now

discuss how they can be naturally resummed.

Indeed, if one applies again the equation of motion, eq. (1), to the correlator

h'a(k, ⌘)'b(�k, ⌘)i0, to get the evolution equation for the PS, then, the last term at

the RHS of eq. (5) gives

e
⌘

Z
d
3
q

(2⇡)3
k · q

q2


h'2(q)'a(k � q)'b(�k)i0 + h'a(k)'b(�k+ q)'2(�q)i0

�
. (21)

The consistency relations first derived in [17, 18] for the bispectrum give

h'2(q)'a(k � q)'b(�k)i0 ' �e
⌘k · q

q2
P

0(q) (Pab(k) � Pab(|k � q|)) +O

✓⇣
q

k

⌘0
◆
, (22)

in the q ⌧ k configuration. The consistency relation is depicted diagrammatically in

fig. 3. The second term in (21) gives the same contribution.

Notice that, while P
0(q) in eq. (22) is taken to be the linear PS, the other two are

fully nonlinear. Moreover, the RHS vanishes at the leading order in q/k, that is, if one

Broad band: kmax ~ 0.4 h/Mpc @ z=1    —>  ~0.1 @ z=0     (go to 2-loop…) 

no fitting on the PS!! (results comparable to EFToLSS @ 1-loop) 

BAO residuals: ok at all redshifts  next order: 2-loop PT +            correlators hJ ��i

Noda, Peloso, M.P. 1705.01475
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Figure 12: The prediction of the EFTofLSS for the matter power spectrum as a function of redshift. In

black, we plot the EFTofLSS with three counterterms, with parameters c2s(1), c1, and c4 fit separately

at each redshift. The darker grey band corresponds to an estimate of the theoretical error estimated

by taking the value of c2s(1) which is 1� o↵ from the best fit obtained at 0.75kfit. We also plot two-

loop EFTofLSS predictions with di↵erent combinations of counterterms, and various other lower-order

predictions. We see that the kreach is higher and higher with the higher redshifts, and the gain with

respect to SPT is very substantial at all redshifts. In is expected that the kreach as a function of redshift

is a smooth function of z, once we take the theoretical error in account.

5 Higher Redshifts

We now proceed to study redshifts higher than z = 0. This will be useful to explore how much the
kreach of the EFTofLSS is improved as we move to higher redshifts, and also to explore the time
dependence of the counterterms.

5.1 Fits to the power spectrum

The results of applying the same procedure that we described at z = 0 to higher redshift are
given in Fig. 12. Figures of the values of the counterterms as a function of kmax, from which we
determine kfit and the theoretical error, are provided in App. B. When we consider the calculation
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Bias

�g = F [�DM , (rirj�)2, · · · ]

No. 1, 2009 HALOS IN THE FILAMENTS 749

Figure 1. Dark matter (upper-left panel) and halo distributions in a slice of thickness 4 h−1 Mpc through the full box (100 h−1 Mpc on a side). For the halo
distributions, the halo mass range (lower limit) is indicated in each panel, and the sizes of the dots are proportional to the virial radii of the halos.

and σ8 = 0.9. In the upper-left panel of Figure 1, we show
the distribution of dark matter particles in a slice of thickness
4 h−1 Mpc at redshift z = 0. For clarity, only 0.15% of the dark
matter particles are plotted. This representation clearly shows
the well-known features of the nonlinear cosmic density field,
in particular, the prominent filamentary structures that coined
the term “cosmic web” are nicely seen.

Dark matter haloes were identified from the simulation at
redshift z = 0 using the standard FOF algorithm (Davis et al.
1985) with a linking length of 0.2 times the mean interparticle
separation. Haloes obtained with this linking length have a mean
over-density of ∼180 (Porciani et al. 2002). As an illustration,
we show in the upper-right, lower-left, and lower-right panels of
Figure 1 the halo distributions for a sequence of decreasing lower
mass limits: !1012.5, !1011.5, and !1010.5 h−1 M⊙, as indicated
in the panels. The sizes of the dots are scaled to be proportional
to the virial radius of the dark matter halos. These plots indicate
that the distribution of halos with masses !1012.5 h−1 M⊙
can only resolve the high-density regions at the nodes of the
cosmic web, while halos with masses !1011.5 h−1 M⊙ trace the
filamentary structures quite well. Including smaller halos down
to !1010.5 h−1 M⊙ can reveal subtle features even in void-like

regions. As discussed in Yang et al. (2009; Figure 1), the SDSS
observations can completely resolve the dark matter halos with
a mass limit of !1012.5 h−1 M⊙ at redshift z ∼ 0.12, and of
!1011.5 h−1 M⊙ at redshift z ∼ 0.05. Thus, the halo-based
probe for filamentary structures investigated in this paper can
be reliably applied to the SDSS observations at low redshifts.

The main purpose of this paper is to probe the orientations
and spins of dark matter halos with respect to the filaments and
sheets within the cosmic web. However, a reliable measurement
of these halo properties, in particular of the spin, requires high
mass resolution. Therefore, we only retain halos with at least
500 particles for further analysis, resulting in a catalog with
73, 068 halos.

2.2. Measuring the Spin and Orientation of the Halos

The angular momentum J of a FOF halo containing N
particles is

J = m

N∑

i=1

ri × vi , (1)

BIAS: distribution of  Galaxy 
and DM Halos   
is a nonlinear and non local 
function of the DM one.

Zhang, Y. et al, ApJ 706, 747, (09)



The Perturbative Bias Expansion
Review by Desjacques, Jeong, Schmidt, 1611.09787

�g(x, ⌧) = F [�; (@i@j�)
2; ✏; · · · ]
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non-linear, nonlocal, stochastic 

Tidal field

2.11 Summary

In this section, we have described the general, perturbative bias expansion of arbitrary large-scale struc-
ture tracers. Clearly, while well-defined and systematic, this expansion is nontrivial and consists of a complex
set of terms. For this reason, we provide a brief summary here before moving on to the following sections.
The general bias expansion can be broken down into three ingredients:

• The deterministic local expansion, i.e. at leading order in derivatives (Sec. 2.5): this series
of terms of the form bOO, where O is an operator and bO is its associated bias parameter, includes as
operators powers of the density and tidal field, as well as convective time derivatives of the tidal field,
as summarized in Eq. (2.63) (in Eulerian space) and Eq. (2.60) (in Lagrangian space). Each operator
O has exactly two spatial derivatives acting on each occurrence of the gravitational potential �.

• Stochastic contributions (Sec. 2.8): in addition to the leading stochastic field ", there is an
additional stochastic field "O associated with each operator O in the bias expansion. This can be
interpreted as “scatter” in the deterministic bias parameter bO.

• higher-derivative terms (Sec. 2.6): For each operator O in the local bias expansion, there are
higher spatial derivative terms such as br2Or2O (and others; for the precise list of terms, see Sec. 2.6).
Physically, these terms describe the fact that galaxy formation is not perfectly local. The bias coe�-
cients of these terms have units of length to some power, for example Mpc2 in the case of br2O. The
length scale that sets the value of these coe�cients is the physical “nonlocality scale” R⇤ of galaxy for-
mation; on scales of order R⇤, these terms are un-suppressed, and a perturbative description of galaxy
bias necessarily breaks down. Note that the stochastic fields also have associated higher-derivative
contributions, which e↵ectively capture the fact that the stochastic fields are expected to be correlated
over the scale R⇤, i.e. their correlation functions are not exact Dirac delta functions in real space (see
Sec. 2.8 for an example).

A further important result is on the relation between the galaxy velocity field and the matter velocity
(velocity bias, Sec. 2.7): velocity bias is guaranteed to be a higher-derivative e↵ect, that is we can write
at lowest order in perturbations and derivatives,

vg = v + �r2vr2
v , (2.126)

where �r2v ⇠ R2
⇤

is related to the nonlocality scale of galaxy formation (other possible terms such as / r�
are equivalent to r2

v at linear order).
The sections referenced above provide all the ingredients necessary to write down the general bias ex-

pansion at any desired order. To be specific, we now summarize the complete bias expansion of a general
galaxy sample up to third order:

�g = b1[�] + br2�[r2�] + ["]

+
1

2
b2

⇥
�2

⇤
+ bK2

⇥
(Kij)

2
⇤
+

⇥
"��

⇤

+
1

6
b3

⇥
�3

⇤
+ b�K2

⇥
�(Kij)

2
⇤
+ bK3

⇥
(Kij)

3
⇤
+ btd

⇥
O(3)

td

⇤
+

⇥
"�2�

2
⇤
+

⇥
"K2(Kij)

2
⇤

+ O(�4) + O
⇥
R2

⇤
r2(�2), R4

⇤
r4�

⇤
. (2.127)

The brackets denote renormalized operators, as defined in Sec. 2.10.4. As denoted in the last line, the terms
neglected here are either fourth order in perturbation theory, or involve higher derivatives of nonlinear
operators, or four powers of spatial derivatives. Note that the number of higher-derivative terms to be
kept depends on the scale R⇤ (recall that br2� / R2

⇤
). Here, we have assumed that R⇤ is of order of

the scale where the matter density field becomes nonlinear, in which case it is su�cient to keep only the
leading higher-derivative term, br2�r2� (see Sec. 4.1.4). In this case, Eq. (2.126) also provides the complete
description of galaxy velocities at this order. In practice, when analyzing an actual galaxy sample, as many
higher-derivative terms should be included as the data are able to constrain (see the discussion in [117]).
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Quantity Symbol Defining relation

Conformal time ⌧ d⌧ ⌘ a�1dt

Eulerian comoving coordinate x Eq. (1.2)

Time derivatives ḟ ḟ ⌘ df/dt

Hubble rate H H = ȧ/a

Conformal Hubble rate H H = a�1da/d⌧ = aH

Mean comoving (physical) matter density ⇢m (%m) ⇢m(⌧) = a3(⌧)%m(⌧)

Mean comoving halo number density nh nh(M, z) ⌘ @2Nh/(@V @ ln M)

Linear matter growth factor D(⌧) Eq. (B.9)

Logarithmic growth rate f(⌧) f ⌘ d ln D/d ln a

Gravitational potential � Eq. (1.2)

Primordial Bardeen potential � �(k)|mat. dom. = T (k)�(k)

Primordial curvature pert. in comoving gauge R R = (5/3)� in matter domination

Lagrangian comoving coordinate q

Comoving coordinate of fluid trajectory xfl(q, ⌧) xfl(q, ⌧) = q + s(q, ⌧)

Lagrangian displacement s(q, ⌧) Eq. (2.25)

Peculiar fluid velocity v v = a ẋ = dx/d⌧

Matter density contrast1 � Eq. (1.1); �(x, ⌧) = 2/(3⌦mH2)r2�(x, ⌧)

Density contrast of galaxies (general tracer) �g Eq. (1.1)

Halo density contrast �h �h(x, ⌧) ⌘ nh(x, ⌧)/nh(⌧) � 1

Lagrangian halo density contrast2 �Lh �Lh (q, ⌧0) = lim⌧!0 �h[xfl(q, ⌧), ⌧ ]/D(⌧)

Tidal field Kij Kij = (@i@j/r2 � �ij/3)�

Linear density field �(1) �(1)(k, z) ⌘ M(k, z)�(k) [Eq. (7.1)]

Operator constructed out of density field O e.g., O(x, ⌧) = �2(x, ⌧)

Smoothed field OR OR(k, z) ⌘
R
k WR(k)O(k)

Operator at n-th order in perturbation theory O(n) e.g., O(2)(x, ⌧) = [�(1)]2(x, ⌧)

Linear matter power spectrum PL(k) PL(k) ⌘ h�(1)(k)�(1)(k0)i0

Variance of linear density field on scale R �2(R) �2(R) =
R
k PL(k)W 2

R(k)

Generalized spectral moment3 �2
n(R) �2

n(R) =
R
k k2nPL(k)W 2

R(k) [Eq. (6.1)]

Critical density (collapse threshold) �c ' 1.686 Eq. (5.9)

Peak significance ⌫c ⌫c ⌘ �c/�(R)

Multiplicity function ⌫cf(⌫c) Eq. (5.18)

Bias parameter4 with respect to operator O bO �h(x, ⌧) =
P

O bO(⌧)O(x, ⌧)

N -th LIMD bias parameter bN bN ⌘ N ! b�N [Eq. (2.10)]

Lagrangian bias parameter bLO �Lh (q, ⌧0) =
P

O bLO(⌧0)OL(q)

Filter function5 on scale R WR(x), WR(k) see Appendix A.2

Lagrangian radius of halos R(M) R(M) = (3M/4⇡⇢m)1/3 [Eq. (5.11)]

Large smoothing scale R`

Operator smoothed on large scale O` O`(x) =
R

d3
yO(x + y)WR`

(y)
1 In synchronous-comoving gauge, see text.
2 For halos identified at time ⌧0; �h satisfies the continuity equation Eq. (2.17) by definition.
3 Here we allow for n 2 R.
4 This is the physical, renormalized bias, see Sec. 2.10.
5 Filter functions are normalized such that

R
d3xWR(x) = 1 and limk!0 WR(k) = 1.

Table 4: List of symbols and notation used throughout the review.

Local: 2 derivatives of          �
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Higher derivative
Stochastic

X

O

bO(⌧)O(x, ⌧)
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statistical fields describing

 the galaxies’ environment

bias parameters

Figure 3: Illustration of the toy model of Sec. 2.1. The solid blue line shows the smoothed density field �
(1)
R (q), while the red

line indicates a long-wavelength perturbation. The dashed horizontal line marks the threshold overdensity �c.

the halo via R(M) = (3M/4⇡⇢m)1/3. Hence, in order to define “regions above threshold” which eventually

collapse to form halos, we filter the initial (linear) density field on the scale R(M), denoting this as �(1)

R
(Fig. 3). The shape of the filter is not relevant for this discussion; we list popular filters in Appendix A.2.
The comoving Lagrangian number density of proto-halos is then defined as

nL
thr

(q) ⌘ ⇥H(�(1)

R (q) � �c) , (2.3)

where �c is a fixed density threshold and ⇥H denotes the Heaviside step function. Note that the “density” nL
thr

defined here corresponds, up to normalizing factors which we neglect here, to the mass-weighted cumulative
number density of halos above mass M (see for example [89] and Sec. 5). In the sketch Fig. 3, the proto-halo
number density is unity whenever the blue solid line crosses the threshold indicated by the horizontal line.
As this toy model describes “thresholded regions,” it is often referred to as “thresholding.”

The statistics of the Gaussian field �(1)

R are completely described by its two-point correlation function

⇠L,R(r) = h�(1)

R (q)�(1)

R (q + r)i , (2.4)

where ⇠L,R(0) = �2(R) is the variance of the filtered density field. The mean “number density” of proto-halos
is obtained by taking the expectation value of Eq. (2.3),

hnL
thr

(q)i =

Z
1

⌫c

e�⌫2/2d⌫ =
1

2
erfc[⌫c/2] ⌘ p1 , ⌫c ⌘ �c

�(R)
. (2.5)

This shows that, for a high threshold ⌫c > 1, proto-halos become exponentially rare. Note that any
normalizing factors that we neglect here do not a↵ect the calculation of the bias, which we turn to next.

The Lagrangian two-point function of equal-mass proto-halos at separation r is given by the ratio of the
probability p2(q, q+r) of finding two proto-halos at position q and q+r, divided by the 1-point probability
squared (p1)2 [65, 12]:

1 + ⇠Lh (r) =
p2(q, q + r)

p2
1

=

r
2

⇡

h
erfc(⌫c/

p
2)

i�2
Z

1

⌫c

e�⌫2/2 erfc

2

4 ⌫c � ⌫⇠̂(r)q
2{1 � ⇠̂2(r)}

3

5 d⌫ . (2.6)

where ⇠̂(r) ⌘ ⇠L,R(r)/�2(R). This relation follows directly from integrating over the Gaussian likelihood

of the density field �(1)

R . Again, ⇠Lh (r) is the two-point function of proto-halos in the initial conditions, as
emphasized by the superscript L, extrapolated to z = 0 using linear theory. If ⇠L,R(r) is su�ciently small,
we can expand Eq. (2.6) in a series,

⇠Lh (r) =
1X

N=1

1

N !
(bLN )2 [⇠L,R(r)]N , (2.7)
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Effect of a long-wavelength  
perturbation on the density 

of local tracers (galaxies, halos…)



real-space



redshift-space

large scale: 
Kaiser 

small scale: 
FoG



�D(~k) + �s(~k) =
Z

d3~x

(2⇡)3
ei~k·~x⇥

1 + �(~x)
⇤
exp

⇥
ikzvz(~x)/H

⇤

Real to redshift space mapping:

see Scoccimarro ’04, 

h�s(~x) �s(~y)i gets contributions  
from terms like h�(~x) �(~y)v2

z(~y))i ⇠ h�(~x) �(~y)ihv2
zi

IR-UV mixing in redshift space

Large scales feel short ones!!
Problems for PT even at very large scales

(plane parallel approx.)�xn � �sn = �xn +
pz

n

aHm
ẑ

even at large                        |~x� ~y|
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Parameter Meaning Prior (flat) Value for the vanilla model

ωb ≡ Ωbh2 The physical baryon energy density [0.005, 0.1] varied
ωc ≡ Ωch2 The physical dark matter energy density [0.01, 0.99] varied

Θs 100×the ratio of the sound horizon to the angular diameter distance at decoupling [0.5, 10] varied
τ The optical depth [0.01, 0.2] varied
ns The spectral index of the primordial power spectrum [0.5, 1.5] varied

log[1010As] The amplitude of the primordial power spectrum [2.7, 4] varied
ASZ The amplitude of SZ power spectrum when using CMB [0, 2] varied
αs The running of the primordial power spectrum [−0.1, 0.1] 0

Σmν The sum of the neutrino masses in the unit of eV [0, 2] 0
Neff The number of the neutrino species [1.5, 10] 3.046
w0 The w0 parameter in the CPL parametrisation [−3, 3] −1
wa The wa parameter in the CPL parametrisation [−3, 3] 0
ΩK The contribution of the curvature to the energy density [−0.1, 0.1] 0
r The tensor to scalar ratio [0, 2] 0

α The nuisance parameter for SN defined in Eq. (20) [0.6, 2.6] varied
β The nuisance parameter for SN defined in Eq. (20) [0.9, 4.6] varied
b1 The nuisance parameter for P (k) when using Eq. (9) [1, 3] varied
b2 The nuisance parameter for P (k) when using Eq. (9) [−4, 4] varied
N The nuisance parameter for P (k) when using Eq. (9) [0, 5000] varied
bHF The nuisance parameter for P (k) when using Eq. (18) [0.1, 10] varied
PHF The nuisance parameter for P (k) when using Eq. (18) [0, 5000] varied
bQ The nuisance parameter for P (k) when using Eq. (19) [0.1, 10] varied
Q The nuisance parameter for P (k) when using Eq. (19) [0.1, 50] varied
S The nuisance parameter for P (k) measurement systematics, defined in Eq. (2) [−1, 1] varied

Table 1. The parameters used in our analysis and their physical meaning, ranges and values for the vanilla ΛCDM model.

where the subscript ‘cb’ denotes ‘CDM plus baryons’, the super-
scripts ‘(22)’ and ‘(13)’ illustrate the perturbative corrections to the
power spectrum at next-to-leading order, and the superscript ‘L’
stands for the linear matter power spectrum. With the presence of
massive neutrinos, Saito et al. (2008, 2009) generalised Eq. (6) to

P 1loop
cbν (k) = f2

cbP
1loop
cb (k) + 2fcbfνP

L
cbν(k) + f2

νP
L
ν (k), (7)

where PL
cbν(k) and PL

ν (k) represent the linear power spectrum for
total matter (CDM plus baryons plus massive neutrinos) and for
massive neutrinos only, respectively, and the coefficient fi denotes
the mass fraction of each species relative to the present-day energy
density of total matter, Ωm, i.e.,

fν ≡
Ων

Ωm
=

∑

mν

Ωmh2 × 94.1eV
, fcb = 1− fν . (8)

A crucial assumption to derive the formula of Eq. (7) is to treat the
neutrino component to stay completely at linear level. Saito et al.
(2009) shows that this assumption can be justified for expected
small mass of neutrinos (see also Shoji & Komatsu (2010)). Given
Eq. (7), Saito et al. (2008, 2009) proposed a SPT-based model to
convert the matter power spectrum to the galaxy power spectrum at
a given scale k and a given redshift z,

Pg(k; z) = b21
[

P 1loop
cbν (k; z) + b2Pb2(k; z) + b22Pb22(k; z)

]

+N,

(9)
where b1, b2 and N denote the linear bias, nonlinear bias and the
residual shot noise respectively, which can be derived using a SPT
prescription (McDonald 2006). Quantities Pb2, Pb22 can be calcu-
lated using SPT and the expression is explicitly given in Eqns. (32)
and (36) in Saito et al. (2009). Note that on linear scales, Eq. (9)
reduces to

Pg(k; z) = b21P
L
cbν(k; z) +N. (10)

Hence b1 acts as a linear bias and N contributes a shot noise con-
tamination stemming from the stochastic bias and nonlinear clus-
tering (Heavens et al. 1998; Seljak 2000; Smith et al. 2007). The
terms multiplying b2 give rise to a scale-dependent bias due to the
nonlinear clustering. In general, b1, b2, N vary with galaxy type,
so we treat them as free parameters to be marginalised over in our
analysis.

3.1.1 Modelling the redshift space distortions

In this section we discuss the issue of model uncertainty in the
CMASS power spectrum, focusing on the effect of the redshift-
space distortions (RSD). In order to quantitatively model the
impact of the RSD on the spherically averaged CMASS power
spectrum, we compare the following RSD models:

RSD Model 1: Linear Kaiser. At very large scales where the linear
perturbation theory holds, the mapping from real to redshift space
can be expressed at linear order, and the resultant redshift-space
power spectrum is enhanced by the so-called Kaiser factor (Kaiser
1987):

P S
g (k, µ) = (1 + fµ2)2Pg(k), (11)

where µ is the cosine between the line-of-sight direction and the
wave vector, and f is the logarithmic growth defined as f ≡
d lnD(a)/d ln a. The superscript ‘S’ denotes the quantity in red-
shift space. Spherically averaging Eq. (11), we have the monopole
component,

P S
0 (k) =

(

1 +
2f
3

+
f2

5

)

Pg(k). (12)

RSD Model 2: Nonlinear Kaiser. The Linear Kaiser model is not
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true especially at mildly nonlinear scales (see e.g., Scoccimarro
2004). To linear order, the matter density perturbation in redshift
space can be written as,

δS(k) = δ(k) + fµ2θ(k), (13)

where θ is the divergence of the peculiar velocity field. In order to
take into account nonlinear gravitational evolution of the velocity-
divergence field separately, the Kaiser model is generalised to the
Nonlinear Kaiser model as follows:

P S
g (k, µ) = Pg,δδ(k) + 2fµ2Pg,δθ(k) + f2µ4Pθθ(k), (14)

where the galaxy density-density power spectrum, Pg,δδ(k) is
modelled using Eq. (9), and the the galaxy density-velocity power
spectrum is modelled as (Swanson et al. 2010),

Pg,δθ(k) = b1 [Pδθ(k) + b2Pb2,θ(k)] . (15)

Note that here we assume no velocity bias, and that the matter
density-velocity, Pδθ , or the velocity-velocity Pθθ can be com-
puted using perturbation theory similarly to the density-density
one. We compare SPT with the closure approximation (CLA)
(Taruya & Hiramatsu 2008; Nishimichi et al. 2009) as an example.
The CLA is one of the improved perturbation theories including
the renormalized perturbation theory (Crocce & Scoccimarro
2006a,b), and the CLA power spectrum at 2-loop order is in
an excellent agreement with the N -body simulation results
(Taruya et al. 2009; Carlson et al. 2009). A disadvantage of the
CLA is that it involves time-consuming integrations in the 2-loop
order, and therefore it is computationally difficult to apply the
CLA to MCMC analysis (see Taruya et al. 2012 for recent effort to
speed up the computation).

RSD Model 3: Nonlinear Kaiser with FoG. At smaller scales than
the typical size of virialized clusters, the internal velocity dis-
persion of galaxies makes the galaxy clustering pattern elongated
along the line of sight, known as the Finger-of-God (FoG) effect
(Jackson 1972). The FoG suppression is necessary for massive ha-
los in which most of the CMASS galaxies exist as central galax-
ies (e.g., Hatton & Cole 1998), with about 10% of the CMASS
galaxies being satellite galaxies (White et al. 2011). The satellites
are expected to have larger small-scale velocity dispersion than
central galaxies, and cause the additional FoG suppression in the
CMASS power spectrum. In order to account for the FoG effect,
Scoccimarro (2004) proposed a phenomenological model in which
the FoG suppression is described by an overall exponential factor:

P S
g (k, µ) = exp

(

−f2σ2
Vk

2µ2)

×
[

Pg,δδ(k) + 2fµ2Pg,δθ(k) + f2µ4Pθθ(k)
]

, (16)

where σV is the velocity dispersion which we treat as a free
parameter.

RSD Model 4: Nonlinear Kaiser with correction terms and FoG.
Recent studies show that higher-order correlations between the
density and the velocity divergence in the nonlinear mapping from
real to redshift space become important to explain the redshift-
space power spectrum especially for massive halos (Taruya et al.
2010; Tang et al. 2011; Nishimichi & Taruya 2011; Okumura et al.
2012b; Reid & White 2011; Okumura et al. 2012a). Taruya et al.
(2010) proposed a new model including such correction terms and

Figure 2. An example of comparison among the RSD models. Upper: the
monopole power spectra for the RSD models shown in the text; RSD 1:
the Linear Kaiser (red), RSD 2: the Nonlinear Kaiser (blue for SPT and
green for CLA), RSD 3: the Nonlinear Kaiser with the FoG prefactor (ma-
genta), and RSD 4: the Nonlinear Kaiser plus correction terms with the
FoG (black). Each spectrum is divided by the Linear Kaiser model with
linear no-wiggle spectrum for clarification purpose. We consider the cos-
mology for the CMASS mocks and the best-fit parameters of (b1, b2, N)
in the case of ΛmνCDM model. We use the linear velocity dispersion,
σV = 4.57Mpc/h when computing the FoG prefactor. For compari-
son, the Linear Kaiser models with b2 = −0.2 (red dashed) and with∑

mν = 0.1 eV (red dotted) are also shown. Lower: fractional difference
of each model from the RSD model 4. The line colours and styles denote
exactly same with those in the upper panel. We show the error bars taken
from diagonal components in the CMASS covariance matrix as a reference.

can be generalized to biased objects:

P S
g (k, µ) = exp

(

−f2σ2
Vk

2µ2)

×
[

Pg,δδ(k) + 2fµ2Pg,δθ(k) + f2µ4Pθθ(k)

+b31A(k, µ; β) + b41B(k, µ; β)
]

, (17)

with β ≡ f/b1. Note that terms associated with A and B include
the linear bias dependence of b21 at maximum, and b31 or b41 orig-
inates from the fact that we replace f with β = f/b1. Also note
that we did not include nonlinear bias terms proportional to b2 in
the correction terms for simplicity as we expect that such terms do
not drastically affect the discussion here.

Now let us compare the predicted power spectra using the
RSD models explained above, which are shown in Fig. 2. The up-
per panel shows absolute amplitudes of the monopole power spec-
trum (divided by the Linear Kaiser model with linear no-wiggle
power spectrum from Eisenstein & Hu 1998) for each model. We
set the values of bias parameters to the best-fit values in the case
of ΛmνCDM model, (b1 = 2.27, b2 = 1.02, N = 2293), corre-
sponding to the Linear Kaiser for the RSD modeling. Meanwhile,
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true especially at mildly nonlinear scales (see e.g., Scoccimarro
2004). To linear order, the matter density perturbation in redshift
space can be written as,

δS(k) = δ(k) + fµ2θ(k), (13)

where θ is the divergence of the peculiar velocity field. In order to
take into account nonlinear gravitational evolution of the velocity-
divergence field separately, the Kaiser model is generalised to the
Nonlinear Kaiser model as follows:

P S
g (k, µ) = Pg,δδ(k) + 2fµ2Pg,δθ(k) + f2µ4Pθθ(k), (14)

where the galaxy density-density power spectrum, Pg,δδ(k) is
modelled using Eq. (9), and the the galaxy density-velocity power
spectrum is modelled as (Swanson et al. 2010),

Pg,δθ(k) = b1 [Pδθ(k) + b2Pb2,θ(k)] . (15)

Note that here we assume no velocity bias, and that the matter
density-velocity, Pδθ , or the velocity-velocity Pθθ can be com-
puted using perturbation theory similarly to the density-density
one. We compare SPT with the closure approximation (CLA)
(Taruya & Hiramatsu 2008; Nishimichi et al. 2009) as an example.
The CLA is one of the improved perturbation theories including
the renormalized perturbation theory (Crocce & Scoccimarro
2006a,b), and the CLA power spectrum at 2-loop order is in
an excellent agreement with the N -body simulation results
(Taruya et al. 2009; Carlson et al. 2009). A disadvantage of the
CLA is that it involves time-consuming integrations in the 2-loop
order, and therefore it is computationally difficult to apply the
CLA to MCMC analysis (see Taruya et al. 2012 for recent effort to
speed up the computation).

RSD Model 3: Nonlinear Kaiser with FoG. At smaller scales than
the typical size of virialized clusters, the internal velocity dis-
persion of galaxies makes the galaxy clustering pattern elongated
along the line of sight, known as the Finger-of-God (FoG) effect
(Jackson 1972). The FoG suppression is necessary for massive ha-
los in which most of the CMASS galaxies exist as central galax-
ies (e.g., Hatton & Cole 1998), with about 10% of the CMASS
galaxies being satellite galaxies (White et al. 2011). The satellites
are expected to have larger small-scale velocity dispersion than
central galaxies, and cause the additional FoG suppression in the
CMASS power spectrum. In order to account for the FoG effect,
Scoccimarro (2004) proposed a phenomenological model in which
the FoG suppression is described by an overall exponential factor:

P S
g (k, µ) = exp

(

−f2σ2
Vk

2µ2)

×
[

Pg,δδ(k) + 2fµ2Pg,δθ(k) + f2µ4Pθθ(k)
]

, (16)

where σV is the velocity dispersion which we treat as a free
parameter.

RSD Model 4: Nonlinear Kaiser with correction terms and FoG.
Recent studies show that higher-order correlations between the
density and the velocity divergence in the nonlinear mapping from
real to redshift space become important to explain the redshift-
space power spectrum especially for massive halos (Taruya et al.
2010; Tang et al. 2011; Nishimichi & Taruya 2011; Okumura et al.
2012b; Reid & White 2011; Okumura et al. 2012a). Taruya et al.
(2010) proposed a new model including such correction terms and

Figure 2. An example of comparison among the RSD models. Upper: the
monopole power spectra for the RSD models shown in the text; RSD 1:
the Linear Kaiser (red), RSD 2: the Nonlinear Kaiser (blue for SPT and
green for CLA), RSD 3: the Nonlinear Kaiser with the FoG prefactor (ma-
genta), and RSD 4: the Nonlinear Kaiser plus correction terms with the
FoG (black). Each spectrum is divided by the Linear Kaiser model with
linear no-wiggle spectrum for clarification purpose. We consider the cos-
mology for the CMASS mocks and the best-fit parameters of (b1, b2, N)
in the case of ΛmνCDM model. We use the linear velocity dispersion,
σV = 4.57Mpc/h when computing the FoG prefactor. For compari-
son, the Linear Kaiser models with b2 = −0.2 (red dashed) and with∑

mν = 0.1 eV (red dotted) are also shown. Lower: fractional difference
of each model from the RSD model 4. The line colours and styles denote
exactly same with those in the upper panel. We show the error bars taken
from diagonal components in the CMASS covariance matrix as a reference.

can be generalized to biased objects:

P S
g (k, µ) = exp

(

−f2σ2
Vk

2µ2)

×
[

Pg,δδ(k) + 2fµ2Pg,δθ(k) + f2µ4Pθθ(k)

+b31A(k, µ; β) + b41B(k, µ; β)
]

, (17)

with β ≡ f/b1. Note that terms associated with A and B include
the linear bias dependence of b21 at maximum, and b31 or b41 orig-
inates from the fact that we replace f with β = f/b1. Also note
that we did not include nonlinear bias terms proportional to b2 in
the correction terms for simplicity as we expect that such terms do
not drastically affect the discussion here.

Now let us compare the predicted power spectra using the
RSD models explained above, which are shown in Fig. 2. The up-
per panel shows absolute amplitudes of the monopole power spec-
trum (divided by the Linear Kaiser model with linear no-wiggle
power spectrum from Eisenstein & Hu 1998) for each model. We
set the values of bias parameters to the best-fit values in the case
of ΛmνCDM model, (b1 = 2.27, b2 = 1.02, N = 2293), corre-
sponding to the Linear Kaiser for the RSD modeling. Meanwhile,
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true especially at mildly nonlinear scales (see e.g., Scoccimarro
2004). To linear order, the matter density perturbation in redshift
space can be written as,

δS(k) = δ(k) + fµ2θ(k), (13)

where θ is the divergence of the peculiar velocity field. In order to
take into account nonlinear gravitational evolution of the velocity-
divergence field separately, the Kaiser model is generalised to the
Nonlinear Kaiser model as follows:

P S
g (k, µ) = Pg,δδ(k) + 2fµ2Pg,δθ(k) + f2µ4Pθθ(k), (14)

where the galaxy density-density power spectrum, Pg,δδ(k) is
modelled using Eq. (9), and the the galaxy density-velocity power
spectrum is modelled as (Swanson et al. 2010),

Pg,δθ(k) = b1 [Pδθ(k) + b2Pb2,θ(k)] . (15)

Note that here we assume no velocity bias, and that the matter
density-velocity, Pδθ , or the velocity-velocity Pθθ can be com-
puted using perturbation theory similarly to the density-density
one. We compare SPT with the closure approximation (CLA)
(Taruya & Hiramatsu 2008; Nishimichi et al. 2009) as an example.
The CLA is one of the improved perturbation theories including
the renormalized perturbation theory (Crocce & Scoccimarro
2006a,b), and the CLA power spectrum at 2-loop order is in
an excellent agreement with the N -body simulation results
(Taruya et al. 2009; Carlson et al. 2009). A disadvantage of the
CLA is that it involves time-consuming integrations in the 2-loop
order, and therefore it is computationally difficult to apply the
CLA to MCMC analysis (see Taruya et al. 2012 for recent effort to
speed up the computation).

RSD Model 3: Nonlinear Kaiser with FoG. At smaller scales than
the typical size of virialized clusters, the internal velocity dis-
persion of galaxies makes the galaxy clustering pattern elongated
along the line of sight, known as the Finger-of-God (FoG) effect
(Jackson 1972). The FoG suppression is necessary for massive ha-
los in which most of the CMASS galaxies exist as central galax-
ies (e.g., Hatton & Cole 1998), with about 10% of the CMASS
galaxies being satellite galaxies (White et al. 2011). The satellites
are expected to have larger small-scale velocity dispersion than
central galaxies, and cause the additional FoG suppression in the
CMASS power spectrum. In order to account for the FoG effect,
Scoccimarro (2004) proposed a phenomenological model in which
the FoG suppression is described by an overall exponential factor:

P S
g (k, µ) = exp

(

−f2σ2
Vk

2µ2)

×
[

Pg,δδ(k) + 2fµ2Pg,δθ(k) + f2µ4Pθθ(k)
]

, (16)

where σV is the velocity dispersion which we treat as a free
parameter.

RSD Model 4: Nonlinear Kaiser with correction terms and FoG.
Recent studies show that higher-order correlations between the
density and the velocity divergence in the nonlinear mapping from
real to redshift space become important to explain the redshift-
space power spectrum especially for massive halos (Taruya et al.
2010; Tang et al. 2011; Nishimichi & Taruya 2011; Okumura et al.
2012b; Reid & White 2011; Okumura et al. 2012a). Taruya et al.
(2010) proposed a new model including such correction terms and

Figure 2. An example of comparison among the RSD models. Upper: the
monopole power spectra for the RSD models shown in the text; RSD 1:
the Linear Kaiser (red), RSD 2: the Nonlinear Kaiser (blue for SPT and
green for CLA), RSD 3: the Nonlinear Kaiser with the FoG prefactor (ma-
genta), and RSD 4: the Nonlinear Kaiser plus correction terms with the
FoG (black). Each spectrum is divided by the Linear Kaiser model with
linear no-wiggle spectrum for clarification purpose. We consider the cos-
mology for the CMASS mocks and the best-fit parameters of (b1, b2, N)
in the case of ΛmνCDM model. We use the linear velocity dispersion,
σV = 4.57Mpc/h when computing the FoG prefactor. For compari-
son, the Linear Kaiser models with b2 = −0.2 (red dashed) and with∑

mν = 0.1 eV (red dotted) are also shown. Lower: fractional difference
of each model from the RSD model 4. The line colours and styles denote
exactly same with those in the upper panel. We show the error bars taken
from diagonal components in the CMASS covariance matrix as a reference.

can be generalized to biased objects:

P S
g (k, µ) = exp

(

−f2σ2
Vk

2µ2)

×
[

Pg,δδ(k) + 2fµ2Pg,δθ(k) + f2µ4Pθθ(k)

+b31A(k, µ; β) + b41B(k, µ; β)
]

, (17)

with β ≡ f/b1. Note that terms associated with A and B include
the linear bias dependence of b21 at maximum, and b31 or b41 orig-
inates from the fact that we replace f with β = f/b1. Also note
that we did not include nonlinear bias terms proportional to b2 in
the correction terms for simplicity as we expect that such terms do
not drastically affect the discussion here.

Now let us compare the predicted power spectra using the
RSD models explained above, which are shown in Fig. 2. The up-
per panel shows absolute amplitudes of the monopole power spec-
trum (divided by the Linear Kaiser model with linear no-wiggle
power spectrum from Eisenstein & Hu 1998) for each model. We
set the values of bias parameters to the best-fit values in the case
of ΛmνCDM model, (b1 = 2.27, b2 = 1.02, N = 2293), corre-
sponding to the Linear Kaiser for the RSD modeling. Meanwhile,
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the galaxy power spectrum [45]. It would be curious to see if the full-shape BOSS +
Planck data will give better constraints than the Planck + BAO likelihood.

3 Methodology and Likelihood

In this Section we discuss technical aspects of our analysis: the theoretical model,
window function treatment, covariance matrices and model parameterization.

3.1 Theoretical Model

Our model for multipole moments of the redshift-space galaxy power spectrum is
based on one-loop perturbation theory. Schematically, it can be written as a sum of
four pieces,5

Pg,`(k) = P
tree

g,` (k) + P
1�loop

g,` (k) + P
noise

g,` (k) + P
ctr

g,` (k) . (3.1)

In this work we limit ourselves to the monopole and quadrupole moments (` = 0, 2).
All multipoles are computed from the 2D anisotropic galaxy power spectrum Pg(k, µ),

Pg,`(k) ⌘
2`+ 1

2

Z
1

�1

dµ Pg(k, µ)P`(µ) , (3.2)

where µ ⌘ k̂ · ẑ is cosine of the angle between a Fourier mode k and the line-of-sight
direction ẑ, whereas P`(µ) are Legendre polynomials of order `. For example, the
tree-level contribution to the multipoles P tree

g,` (k) are given by the Kaiser formula [46],

P
tree

g (k, µ) = (b1 + fµ
2)2Plin(k) , (3.3)

where b1 is the scale-independent linear bias coefficient. For compactness, we sup-
press explicit time dependence in all formulas of this section assuming that all rele-
vant quantities are evaluated at the effective redshift zeff of a given data sample. For
clarity, all the expressions of this section are presented without IR-resummation and
the Alcock-Paczynski effect, which are properly taken into account, see Appendix A
for more detail.

The next important ingredient of our analytic model is one-loop corrections
P

1�loop

g,` (k) that encapsulate the non-linear redshift-space mapping along with non-
linearities due to dark matter clustering and bias. This model has been described in
detail in Refs. [15, 47, 48] and is summarized in Appendix A. We use the following

5We use the following convention: h�k�k0i = (2⇡)3P (k)�(3)D (k + k0), where we introduced the
density (contrast) field � ⌘ ⇢(x, t)/⇢̄(t)� 1 (⇢ and ⇢̄ are the local and background densities, respec-
tively), and h...i denotes the averaging over the cosmological ensemble.
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basis of bias operators6

�g = b1� +
b2

2
�
2 + bG2G2 , (3.4)

where � is the nonlinear matter density field and the Fourier representation of the
tidal field operator G2 is given by

G2(k) =

Z
d
3p

(2⇡)3


(p · (k� p))2

p2|k� p|2
� 1

�
�lin(p)�lin(k� p) , (3.5)

where �lin is the linear theory density field. Note that there is one extra bias param-
eter that contributes to the one-loop power spectrum, b�3 . We have found that this
parameter is very degenerate with other nuisance parameters and the BOSS data
are not accurate enough to break this degeneracy. For the purposes of this paper we
have fixed it to zero. This choice still allows for a sufficient freedom in the parameter
space exploration. We have checked that fixing b�3 or varying it within some priors
has no effect on the cosmological parameter estimates.

The stochastic contribution is modeled as a simple Poisson shot noise with the
constant power spectrum in Fourier space and a free amplitude. Note that in the
absence of the window function only the monopole moment has a constant shot noise
power, i.e.

P
noise

g,0 (k) = Pshot , P
noise

g,2 (k) = 0 . (3.6)

Finally, the last part of our model are the so-called ultraviolet (UV) countert-
erms P

ctr

g,` (k). The counterterms were not included in theoretical models used in the
previous data analyses. For this reason, we discuss them in more detail here. The
purpose of the counterterms is to fix the dependence of the one-loop power spec-
trum on the complicated unknown short-scale physics, which cannot be modeled by
means of perturbation theory. To understand qualitatively why these corrections are
needed let us note that a part of the loop integral comes from integrating over high-k
Fourier modes for which perturbation theory does not apply. This means that results
of loop calculations are necessarily wrong, even though they converge to some finite
values. For the theory to be consistent, there must be counterterms to cancel the
spurious UV-dependence. Besides, standard perturbation theory does not correctly
capture the backreaction of short scales on long-wavelength fluctuations. These ef-
fects are taken into account by the so-called “finite” part of the UV counterterms,
which describes physical effects missing in standard perturbation theory. Since the
loop integrals converge for the ⇤CDM linear power spectrum, there is no practical
need to distinguish between these two physically different parts of the counterterms.
Hence, every counterterm can be parametrized by a single free coefficient to be fitted

6As pointed out in [11, 49] the evolution of biased tracers is non-local in time, which leads
to appearance of bias operators that cannot be written in terms of tidal tensor @i@j� at a finite
time slice. However, these operators appear only at fourth order in perturbation theory and this
important subtlety is not relevant for the one-loop power spectrum that we consider.
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important subtlety is not relevant for the one-loop power spectrum that we consider.
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are not derived from first principles and can introduce uncontrollable biases in cos-
mological parameter estimations. To proceed, we choose a different strategy which
fits the spirit of perturbation theory. We introduce an additional counterterm to
capture the redshift space non-linearities at next-to-leading order (NLO),

P
ctr,NLO(k, µ) ⌘ c̃ k

4
µ
4
f
4 (b1 + fµ

2)2Plin(k) . (3.10)

Let us discuss the form of this expression. As argued above, the non-linear scale for
the velocity dispersion ⇠ �

�1

v is smaller than the dark matter nonlinear scale kNL, but
the stochastic velocity field couples with the large-scale density dominantly along the
line-of-sight. Thus, the redshift-space mapping effectively generates an expansion in
powers of (µk�v)2. The standard one-loop counterterms in Eq. (3.7) correspond to
the term r

2

z�(k, µ) in this expansion. From this point of view, the NLO counterterm
in Eq. (3.10) can be naturally viewed as a next-to-leading term in this expansion,
i.e. r

4

z�(k, µ) contribution.
It should be stressed that the main objective of introducing the new counterterm

(3.10) is to capture the NLO sensitivity to fingers-of-God. The contributions from
other physical effects (higher-derivative bias etc.) are expected to be sub-dominant
since they have the same order of magnitude as the two-loop corrections to the real-
space matter density. Thus, they can be neglected at the one-loop order that we
use in this paper. Given this reason, we choose the NLO contribution (3.10) to be
universal for all multipole moments, as expected from the redshift-space mapping.

Another way to understand role of the NLO counterterm is to view it as a
simple model for the theoretical error. Marginalizing over the amplitude c̃, we are
marginalizing over the estimated uncertainty due to the fingers-of-God modeling.
While in principle a more elaborate procedure is needed to ensure that the results of
the analysis are unbiased [53], this simple prescription is sufficient given the BOSS
survey volume.

In summary, our model for the power spectrum is based on one-loop perturbation
theory for galaxies in redshift-space supplemented with LO and NLO counterterms.
It includes seven free nuisance parameters: three bias coefficients (b1, b2, bG2), three
redshift-space counterterms (c2

0
, c

2

2
, c̃) and the shot noise amplitude Pshot.

3.2 Power Spectra and Covariance Matrices

The BOSS survey has measured the spectroscopic redshifts of 1 198 006 galaxies
using the SDSS multi-fibre spectrographs and multi-color SDSS imaging (see [54]
and references therein). The BOSS-DR 12 galaxy sample spans over the redshift
range 0.2 < z < 0.75. The data include four different selections: LOWZ, LOWZE2,
LOWZE3, CMASS. They are combined into two non-overlapping redshift bins with
zeff = 0.38 and zeff = 0.61. Each redshift bin sample is additionally divided into two
sub-samples depending on the Galactic hemisphere where the galaxies are observed.
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from the data. Note that the scale-dependence of the counterterms is not free. It is
fully fixed by symmetry arguments at any order in perturbation theory. This state-
ment holds true for pure dark matter [8], dark matter halos [11, 13], and galaxies in
redshift space [14, 15].

At first non-trivial order in the gradient and field power expansion there are two
counterterms needed for the one-loop monopole and quadrupole moments [14, 15],
which can be cast in the following form:

P
ctr,LO
` (k) ⌘ �2 c2` k

2
Plin(k) , ` = 0, 2 . (3.7)

The reason to keep two different free coefficients is that they fix different loops and
capture different physical effects. For instance, the monopole counterterm includes
the contribution of the higher-derivative bias term br2r

2
�, which is absent for higher

moments. This should be contrasted with the quadrupole counterterm, which is
dominated by the fingers-of-God effect [50]. Indeed, neglecting other nonlinearities,
the c

2

2
-contribution can be related to the short-scale galaxy velocity dispersion �

2

v ,

c
2

2
=

f(5f 2 + 12fb1 + 7b2
1
)

14
�
2

v ⇡ 2.5 �2

v , (3.8)

where we assumed b1 = 2 and f = 0.75 typical for the high-z BOSS sample. This
formula is derived by expanding the velocity field into the short and long-wavelength
contributions and averaging the redshift-space power spectrum over the short-scale
modes,

P
FoG(k, µ) ⇡ �(µfk�v)

2
P

tree

g (k, µ) + higher orders , (3.9)

which is then matched to our expression for P ctr,LO
2

(k). Note that a similar expression
can be obtained upon Taylor-expanding some simple phenomenological models for
the fingers-of-God with a Gaussian or Lorentzian damping, e.g. [5, 6, 51]. The
typical value for the velocity dispersion for the BOSS-like sample �v ⇠ 5 Mpc/h
yields c

2

2
⇠ 60Mpc2/h2. We emphasize that this is just a simple order-of-magnitude

estimate and that the true amplitude (and even the sign) of the counterterms cannot
be predicted.

The one-loop perturbation theory model (3.1) is sufficient to describe the statis-
tics of biased tracers in real space up to kmax = 0.3 h/Mpc for the volume and
redshifts typical to the BOSS survey [52]. While two-loop contributions due to dark
matter clustering may be sufficiently small, the mapping from real to redshift space
can produce significant correction to the one-loop result because of higher order
short-scale velocity cumulants, whose characteristic momentum scale �

�1

v can be sig-
nificantly lower than the non-linear scale kNL controlling gravitational non-linearities.
This implies that the usual one-loop power spectrum model [14, 15] is not sufficient
for an accurate description of the data even on large scales. One option to get around
is to use some phenomenological model for the fingers-of-God. However, these models
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EFT counterterms  
in redshift space

the galaxy power spectrum [45]. It would be curious to see if the full-shape BOSS +
Planck data will give better constraints than the Planck + BAO likelihood.

3 Methodology and Likelihood

In this Section we discuss technical aspects of our analysis: the theoretical model,
window function treatment, covariance matrices and model parameterization.

3.1 Theoretical Model

Our model for multipole moments of the redshift-space galaxy power spectrum is
based on one-loop perturbation theory. Schematically, it can be written as a sum of
four pieces,5

Pg,`(k) = P
tree

g,` (k) + P
1�loop

g,` (k) + P
noise

g,` (k) + P
ctr

g,` (k) . (3.1)

In this work we limit ourselves to the monopole and quadrupole moments (` = 0, 2).
All multipoles are computed from the 2D anisotropic galaxy power spectrum Pg(k, µ),

Pg,`(k) ⌘
2`+ 1

2

Z
1

�1

dµ Pg(k, µ)P`(µ) , (3.2)

where µ ⌘ k̂ · ẑ is cosine of the angle between a Fourier mode k and the line-of-sight
direction ẑ, whereas P`(µ) are Legendre polynomials of order `. For example, the
tree-level contribution to the multipoles P tree

g,` (k) are given by the Kaiser formula [46],

P
tree

g (k, µ) = (b1 + fµ
2)2Plin(k) , (3.3)

where b1 is the scale-independent linear bias coefficient. For compactness, we sup-
press explicit time dependence in all formulas of this section assuming that all rele-
vant quantities are evaluated at the effective redshift zeff of a given data sample. For
clarity, all the expressions of this section are presented without IR-resummation and
the Alcock-Paczynski effect, which are properly taken into account, see Appendix A
for more detail.

The next important ingredient of our analytic model is one-loop corrections
P

1�loop

g,` (k) that encapsulate the non-linear redshift-space mapping along with non-
linearities due to dark matter clustering and bias. This model has been described in
detail in Refs. [15, 47, 48] and is summarized in Appendix A. We use the following

5We use the following convention: h�k�k0i = (2⇡)3P (k)�(3)D (k + k0), where we introduced the
density (contrast) field � ⌘ ⇢(x, t)/⇢̄(t)� 1 (⇢ and ⇢̄ are the local and background densities, respec-
tively), and h...i denotes the averaging over the cosmological ensemble.
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Figure 1: Left panel : The posterior distribution for the late-Universe parameters
H0,⌦m and �8 obtained with priors on !b from Planck (gray contours) and BBN (blue
contours). For comparison we also show the Planck 2018 posterior (red contours) for
the same model (flat ⇤CDM with massive neutrinos). Right panel : The monopole
(black dots) and quadrupole (blue dots) power spectra moments of the BOSS data for
high-z (upper panel) and low-z (lower panel) north galactic cap (NGC) samples, along
with the best-fit theoretical model curves. The corresponding best-fit theoretical
spectra are plotted in solid black and blue. H0 is quoted in units [km/s/Mpc].

adopted in this work allows for a clear comparison between the two experiments at
the level of the fundamental ⇤CDM parameters. Our measurement of H0 is driven by
the geometric location of the BAO peaks, whereas the limits on ⌦m result from the
combination of both the geometric (distance) and shape information. �8 is measured
through redshift-space distortions. We performed several tests to ensure that our
constraints are saturated with these three effects, and confirmed that distance ratio
measurements implemented through the Alcock-Paczynski effect can only marginally
affect the cosmological parameters of ⇤CDM. However, the situation changes in
its extensions, in which the Alcock-Paczynski effect becomes a significant source of
information.

It is important to emphasize that we did not assume strong priors on the power
spectrum shape in our analysis, in contrast with the previous full-shape studies,
which used such priors. In order to explore the relation with those previous works
we ran an analysis with very tight shape priors and obtained essentially the same
results as in Tab. 1. However, in that case ⌦m cannot be viewed as an independently
measured parameter, since the shape priors completely fix the relation between ⌦m
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Beyond the perturbative 
expansion

JCAP06(2018)028

simplify the computation, we keep the second derivative of the field fixed at the value (2.13).
We get,

h�(x̄ = 0, A; ✏)i�A =

Z
dAq
2⇡�2

A

e
� A2

2�2
A

Z
dy
p

2⇡
e
� 1

2(y(1�A)+✏2y3)2
� 1 ,

=

Z
dy
p

2⇡

e

� y2(1+✏2y2)2

2(1+y2�2
A)

q
1 + y2�2

A

� 1 , (2.18)

where, from (2.13) we have
�
2

A = h�
2

L(⌧)i , (2.19)

which will play the role of the PT expansion parameter in what follows. Being constrained
to run over maxima of the density field, the average (2.18) does not vanish.

A power series in �
2

A,
NmaxX

n=1

c2n(✏)�2n
A , (2.20)

clearly is not enough to represent (2.18). By Taylor expanding in �
2

A around �
2

A = 0, one
easily realizes that he c2n(✏)’s, are all finite for ✏ ! 0, as the corresponding integrals are all
cut o↵ by the e

�y2/2 factor. On the other hand, eq. (2.18) diverges logarithmically for ✏ = 0,
with a coe�cient which is nonperturbative (and non analytic) in �

2

A. This can be seen by
considering the regime ✏

2
⌧ �

2

A, and evaluating the contribution to the integral from the
region 1/�

2

A ⌧ y
2
⌧ 1/✏

2, in which it can be approximated as

⇠ 2e
� 1

2�2
A

Z
1/✏

1/�A

dyq
2⇡y2�2

A

⇠ log(�2

A/✏
2)

e
� 1

2�2
A

q
2⇡�2

A

. (2.21)

Indeed, as shown in A, the integral can be represented with a transseries with the following
structure (for an introduction to transseries and resurgence, see [20] and references therein),

h�(x̄ = 0, A; ✏)i�A '

NmaxX

n=1

c2n(✏)�2n
A

+
e
� 1

2�2
A

q
2⇡�2

A

 
log(�2

A/✏
2) + C0(✏) +

NmaxX

m=1

d2m(✏)�2m
A

!
+ · · · , (2.22)

where all the c2n(✏) and d2m(✏) are regular in the ✏ ! 0 limit. The perturbative coe�cients
are, for ✏ = 0,

c2n(0) = (2n � 1)!! . (2.23)

The remaining terms are all nonperturbative, as, due to the exp(�1/2�
2

A) factor, they go
to zero faster than any power of �

2

A as �
2

A ! 0, and therefore cannot be captured at any
order of the Taylor expansion. Among the nonperturbative coe�cients, C0(✏) depends on the
particular ✏-regularization procedure and cannot be computed in the general case (as it can
be reabsorbed in the logarithmic term by a redefinition of ✏). On the other hand, the other
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Figure 2. The ratio between � as obtained in di↵erent approximations and the full one, obtained
by integrating eq. (2.18) numerically. The order is referred to the value of Nmax in the summations of
eqs. (2.20) and (2.22). For the dashed lines, the nonperturbative coe�cients d2n have been set to zero,
leaving only the SPT expansion. The dash-dotted line represents the Borel summation of eq. (2.32).

which, due to the 1/n! factors has a finite radius of convergence, in which it converges to

ĝ(⇠) =
1

p
1 � 2 ⇠

. (2.29)

Then, we can try to define a meaningful summation for the initial divergent series by trans-
forming ĝ(⇠) back via the directional Laplace transform

L
✓[ĝ](z) =

Z ei✓1

0

d⇠ e
�z⇠

ĝ(⇠) , (2.30)

where the integral is taken on a half-line starting from the origin and making an angle theta
with the positive real axis. Since the integrand is singular in ⇠ = 1/2 the procedure has an
ambiguity, in the form of a nonperturbative imaginary part emerging from the discontinuity
of the directional Laplace transform as the ✓ ! 0 limit is taken from above or from below,

lim
✓!0±

L
✓[ĝ](z) =

e
�z/2

p
⇡
2z

✓
Erfi

✓r
z

2

◆
± i

◆
(2.31)

which leads to the possible identification

1X

n=1

c2n(0)�2n
A ' e

� 1
2�2

A

r
⇡

2�2

A

 
Erfi

 s
1

2�2

A

!
+ i C

!
� 1 , (2.32)

where the C constant contains the ambiguity of the procedure. It can be checked that the
PT expansion of the expression at the r.h.s. reproduces (2.20) at all orders, and moreover
that it is finite for any value of �

2

A.
In figure 2 we show the ratios between di↵erent approximations to the full integral (2.18)

and the integral itself, evaluated numerically. The non-convergence of the standard PT
expansion (the first sum in (2.25)) is clear from the behavior of the dashed lines for increasing
values of the truncation order, that is, on the value of Nmax in the sums.
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In the first case, defining

B
(l)(q, k) ⌘ (2l + 1)
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dµk

2

Z 1

�1

dµq

2

Z 2⇡

0

d�

2⇡
B

(S)
t (q,k�,�k+)Pl(µ(µk, µq,�)) , (30)

we get

B
(l=0)(q, k)
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= �


1

3bt
+
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,
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. (31)

A second possibility is to weight the angular integrals with Legendre polynomials

in µk,

B
(lk)(q, k) ⌘

2l + 1

2

Z 1

�1

dµk

2

Z 1

�1

dµq

2

Z 2⇡

0

d�

2⇡
B

(S)
t (q,k�,�k+)Pl(µk) , (32)

notice the di↵erent normalization in front of the integral. In this case, we get

B
(lk=0)(q, k)

P (lq=0)(q)P (lk=0)(k)
=

B
(l=0)(q, k)

P (lq=0)(q)P (lk=0)(k)

B
(lk=2)(q, k)

P (lq=0)(q)P (lk=0)(k)
= �

2�t

45bt

2 + bt(5 + 3�t)

1 + 2
3�t +

1
5�

2
t

d lnP (lk=0)(k)

d ln k

�
105 + 43�t + 55bt�t + 33bt�2

t

315 bt
�
1 + 2

3�t +
1
5�

2
t

� P
(lk=2)(k)

P (lk=0)(k)

d lnP (lk=2)(k)

d ln k

�
4�t

315bt

2 + bt(5 + 3�t)

1 + 2
3�t +

1
5�

2
t

P
(lk=4)(k)

P (lk=0)(k)

d lnP (lk=4)(k)

d ln k
. (33)

Finally, defining

B
(lq)(q, k) ⌘

2l + 1

2

Z 1

�1

dµk

2

Z 1

�1

dµq

2

Z 2⇡

0

d�

2⇡
B

(S)
t (q,k�,�k+)Pl(µq) , (34)

we get

B
(lq=0)(q, k)

P (lq=0)(q)P (lk=0)(k)
=

B
(l=0)(q, k)

P (lq=0)(q)P (lk=0)(k)

B
(lq=2)(q, k)

P (lq=0)(q)P (lk=0)(k)
= �

2�t

63bt

7 + bt(7 + 6�t)

1 + 2
3�t +

1
5�

2
t

d lnP (lk=0)(k)

d ln k

�
42 + 22�t + 28bt�t + 24bt�2

t

315 bt
�
1 + 2

3�t +
1
5�

2
t

� P
(lk=2)(k)

P (lk=0)(k)

d lnP (lk=2)(k)

d ln k
.

(35)

In redshift space 

�t = f/bt
<latexit sha1_base64="gaHZpQEaP90wGM+mzqGOa0L+3mY="></latexit>
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This is an exciting and testable result since all the quantities in Eq. ?? are

measurable: B
(S)
t and P

(S
t are the observed galaxy (or any other tracers) bispectrum

and power spectrum in the redshift space. We will say more on this in the following.

At first sight one could use Eq. ?? to disentangle the well known (cite something

here) degeneracy between the linear bias bt and the growth function f : two di↵erent

configurations of µk and µq can be chosen to have, at least, two measurements which

can be used to constrints these two parameters. Taking, for example, µq = 0, i.e. q

perpendicular to the line of sight, would give us a measurement for bt; then considering

the configuration µk = µq = 1, i.e. both the two modes parallel to the line of sight,

one can measure a combination of f and bt which gives a unique value of f , given the

previous measurement of bt.

Another possible, and maybe more reliable, way to use Eq. ??, can be considering

a multipole expansion, in order to consider all the possible µi’s configurations, so that

we include informations from all the configurations.

First of all we define the momenta of the power spectrum as

P
(l)
t (k) ⌘

2l + 1

2

Z 1

�1

dµk Pl(µk)P
(S)
t (k, µk), (36)

where Pl are the well known Legendre polynomials. As a first step we can take the

Kaiser’s limit for the power spectrum, Eq. ??, to see that§

P
(l)
t (q)

���
q!0

= Fl(bt, f)P
0(q), (37)

with

Fl(bt, f) =

✓
b
2
t +

2

3
btf +

1

5
f
2

◆
�l0 + 4

✓
1

3
btf +

1

7
f
2

◆
�2l +

8

35
f
2
�4l. (38)

From Eq. 37 we can obtain the noted relation between the quadrupole and the monopole

of the power spectrum in the Kaiser limit

P
(2)
t (q)

P
(0)
t (q)

=
20(7�t + 3�2

t )

7(15 + 10�t + 3�2
t )
, (39)

with �t ⌘ f/bt.

We are now ready for the calculations of the various momenta of Eq. ??. Before it we

have to note that the three angles µ, µk and µq are not fully independent, since, given

the orientation of the two modes with respect to the z axis, the angle µ can be expressed

as a combination of the other two and the di↵erence of the azimuthal angles, namely

µ =
q
(1� µ2

k)(1� µ2
q) cos�+ µkµq, (40)

with � ⌘ �k � �q, the di↵erence of the azimuthal angles of k and q. With Eq. 40 in

mind the integrations over the solid angles become
Z

d
2
q̂

Z
d
2
k̂ !

Z 1

�1

dµk

2

Z 1

�1

dµq

2

Z 2⇡

0

d�

2⇡
. (41)

§ Here we are using also the orthogonality of the Legendre polynomialsZ
dxPl(x)Pm(x) =

2�lm
2l + 1

on large scales:
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