Bedelbeny kool

Wv=FET C ARG I> ACL
7@% et >

il g Loy O mom

H The Setup.
ﬁﬂﬂ ("Il “T“Qt’ Understanding ML at the very least means understanding neural

networks. A neural network is a function

I :
Yo :
ﬂM,'ﬁ(uM [/ I ¢g R 5 R (1)
- (J with parameters #. We’ve chosen outputs in R because, channeling
Coleman, scalars already exhibit the essentials. We’ll use the lingo
Input: z € R? 2)
[N =FT" : Output: ¢p(x) € R (3)
Network: ¢y € Maps(R?, R) (4)
/_/—% T Ve Ry THL V6 Data: D, (5)
'FL S / where the data D depends on the problem, but involves at least a
> : subset of R?, potentially paired with labels y € R.

‘With this minimal background, let’s ask our central question:

(M«?ZT p dgm (W -
Question: What does a NN predict?

N N - FT OMTL«-T A/ (For any fixed value of 6, the answer is clear: ¢y(x). However, the
—_— — answer is complicated by issues of both dynamics and statistics.
: First, dynamics. In ML, parameters are updated to solve problems

@ 'Fl_ -7 44 (MMM !> and we really have trajectories in

—_— :
_— Parameter Space: 0(t) € R (6)
@ NA/ — FT o a? Output Space: ¢y () € R (7
J/J Function Space: ¢y € Maps(R?, R). 8)
. — _ :
\) N N £T DG FIAXT ’LW governed by some learning dynamics determined by the optimization
.. - — (- algorithm and the nature of the learning problem. For instance, in
I ') Fiz CE T«’EDQIQS (NN i P> supervised learning we have data
W) TATERACTIONS D = {(w0,12) € R x R}, O)
N) < MMET?IB and a loss function
: i
V) youe FAS @Y, cFr, oM 00 = Y ol), (10)
- H a=1
where £ is a loss function such as lysg = (¢g(24) — ya)?. One may L 0(t), and therefore we have an ensemble of trajectories. We choose 1
optimize # by gradient descent to think of #(t) drawn as

16;

‘dt = —V,Lldo], (11) 0(t) ~ P(6(t)), 17)
or other algorithms, e.g., classics like stochastic gradient descent a density on parameters that depends on the training time and yields
(SGD) [23] 24] or Adam [25], or a more recent technique such as time-dependent correlators
Energy Conserving Descent [26, 27]. Throughout, ¢ is training time)
of the learning algorithm unless otherwise noted. Gy (z) = (¢o(x))e (18)

Second, statistics. When a NN is initialized on your computer, the G$2) (2,y) = (¢a(x)do(y))e, (19)

parameters 6 are initialized as draws
where the subscript ¢ indicates time-dependence and the expecta-

0~ P(O) (12) : tion is with respect to P(A(t)). Of course, assuming that learning is
from a distribution P(f), where means “drawn from” in this context. helping, we wish to take ¢ — oo and are interested in
Different draws of ¢ will give different functions ¢g, and a priori we
have no reason to prefer one over another. The prediction ¢g(z) Gg,)(z) = mean prediction of co-number of NNs as — 0o.

therefore can’t be fundamental! Instead, what is fundamental is the
average I)rC(ll(fthIl 2\11(1 S(f(f()ll(l moment or variance: Ren‘arkably’ we “,iu see that in a Certain Supervised Setting there iS

an exact analytic solution for this quantity.

Eloa(a)] = [d0P(0) (o) (13)

ElGu(2)0n(w)] = [d0P(0) ou0)on(s), (1) Wiy ;{OM CADE
as well as the higher moments. Expectations are across different

initializations. Since we're physicists, we henceforth replace E[-] = (-) - > C (l\
and we remember this is a statistical expectation value. It’s useful 7“16 DCC TN 2

to put this in our language:

G () = (o(2)) (15) e Tpg/v(‘\’ S 2)
GO(x,y) = (90(x)d0(y)), (16) QUANT (73

the mean prediction and second moment are just the one-point and
two-point correlation functions of the statistical ensemble of neural
networks. Apparently ML has something to do with field theory.
Putting the dynamics and statistics together, we have an ensemble
of initial f-values, each of which is the starting point of a trajectory

In the Euclidean case, when the expectation is a statistical expecta-

~ : .
N N —> 1» T tion, one my say
Euclidean Answer: a F'T is a statistical ensemble of functions.
) D ; |
ey : Our minimal requirements get us a partition function
H 210 = <Pfd"r,/(1)o(1)> (129)

B that we can use to compute correlators, where at this stage we are
Question: What is a field theory? : agnostic about the definition of (-). In normal field theory, the (-) is
: defined by the Feynman path integral

At the very least, a field theory needs 210 - / DSl @06, (130)

* Fields, functlf)ns from an appropriate function space, or sections : which requires specifying an action S[¢] that determines a density
of an appropriate bundle, more generally. on functions exp(—S[@]). But that’s not the data we specify when

: we specify a NN. The NN data (¢a, P(6)) instead defines
e Correlation Functions of fields, here expressed as scalars

ﬂﬂ:/wmmgmmmm_ (131)
G ar,... 20) = (1) . 6(a,). (128) :
m 5%WJWW H fm Zw&f@K
You might already be wanting to add more beyond these minimal :
requirements — we'll discuss that in a second. For now, we have @ \ VV ks NN CQ FT° ?
H P
Answer: a FT is an ensemble of functions with a way to com-)
pute their correlators.) ONb A G SATISF OS Axzo My

(we 2021 poper € pepat «| Facho)

: \D Tree THeolIES (map amm,wdu)
PerTAzoly TR OF WW-£T L

For sunplu ity, we again consider a single-layer fully connec tvd net-

(CPQ P(_Q)) work of width N, with the so-called biases turned off for simplicity:
\ :
-7 33 ulo(ulls), (32)

i=1 j=1

where the set of network parameters is § = {wg.)), wlgl)} independently
and identically distributed (i.i.d.).

E where the last equality follows from the ones being i.i.d., (w(” (1)> = J g

1120, The sum over ¢ gives us N copies of the same funcmon, leaving
us with

ursj) ~ P(w(o)) u!lm ~ P(u:(l)). (33) G (x,y) = pa (7(11)()2) o(w (;))y()) (39)

Under this assumption, we see where we emphasize there is now no summation on i. This is an

exact-in-N two-point function that now requires only on the com-

Observation: The network is a sum of N i.i.d. functions. : putation of the quantity in bra-kets. One may try to evaluate it

: exactly by doing the integral over w®. If it can’t be done, Monte

This is a function version of the Central Limit Theorem, generaliz- : Carlo estimates may be obtained from M samples of w©® ~ P(w(®)

ing the review in Appendix EI, and gives us the Neural Network / H as

Gaussian Process (NNGP) correspondence i (2) e Z o),)

- Ay =57 D2 olww)o(wi’n). (40)

samples

NNGP Correspondence: in the N — oo limit, ¢ is drawn :
from a Gaussian Process (GP), In typical NN settings, parameter densities are easy to sample for
: convenience, allowing for e: computation of the estimate. If the
lim ¢(z) ~ N (pu(z), K(z,y)), (34) density is more complicated, one may always resort to Markov chains,
N=oo : e.g. as in lattice field theory.
With this computation in hand, we have the defining data of this
: NNGP,
By the CLT, exp(—S[¢]) is Gaussian and therefore S[¢] is quadratic \}1_{1; o) ~ N (0,G%(z,7)) . (41)
in networks. Now this really feels like physics, since the infinite neural :
network is drawn from a Gaussian density on functions, which defines :
a generalized free field theory. : d. d 9 -1y
We will address generality of the NNGP correspondence momen- Slel= / d'ad’y §(z) G (z,y) ™ Bl), “2)
tarily, but let’s first get a feel for how to do computations. To facil-

with mean and covariance (or kernel) pu(z) and K(z,y).

The associated action is

itate then, we take P(w™) to have zero mean and finite variance, where)
[6 w6, 2) = 596 - 2). (19)
@) =0 @) = p, (3)
H defines the inverse two-point function. In fact, this allows us to
vhi " i i i M = i : . . c .- . 7
which causes the one-point function to vanish G %(z) = 0. Following : determine the action of any NNGP with pu(z) = GO (z) = 0, by

Williams [34], we compute the two-point function in parameter space
(with Einstein summation)

1

computing the G in parameter space and inverting it.

So certain large neural networks are function draws from general-

(2) - (1) 0y (1) (0) ap
G¥(z,y) = N< ”(“) wy o (wyy yi)) (36) ized free field theories. But at this point you might be asking yourself
1 :
— ,(1),,(1) ((‘) (0) :
=N (w; w) (o (wi wj)o (wyy) (37 : Question: How general is the NNGP correspondence?

M2 (0) (0) H
Lo () o). (38) 5 [me A= WIDTH
v \/L[Zj cun ae CEAMELS

ATV ~= ReAds - U (/W))

4 Lo

LEADIN G TATERACTIOAS

CLT — TREE
TATEAACIZOAR = NIt FREE —> 4OT cLT

=

CONTROLLED T WNTERACTIONS
_ GY = (d(x)8(y)d(2)p(w)) (45)
| = Z wiwjwgw) (i) i () pr(2)pr(w)) (46)

FINTTE /v CORAE CTTOAS
‘) N —2 (wh (i) pi(y)pi(2) ps(w)) (47)
(‘_2'.3 o | + Z w;) (w 2)¢i(y)p;(z)pj(w) + perms). (48)
i#j

G C e

One can see that you have to be careful with indices. The connected
4-pt function is [38]

G (zy,z,w) = GV (z,y, z,w) — (G(Z)(:r,y)(?(z) (2, w) + perms) ,
(49)
.23 BTZ Ek C IA/“E: PEVUQe"t) C_ 6 and watching indices carefully we obtain

D (nr ~ an 1 [<
Y s) 6y zw) = 5 (s (e @ee@aw) 60
T
6} ¢ c = ((wil@)ei(m)ei(2)p <u>>>+perms)), (1)

[I

MeCHANES &1 ACT EEDETHE uéré,r,(r: le e
Skowy TAvCE Tls1- YCi)Zg

EG NA- TaTepp: CP = C]SW,,‘ W L)
QP(") - e (b "> x—> ~x P(h)* bs) = ¢ fpce Deforms P(w' W L9
L 43(d) sa) I RREkcy TADEPR[

3 LC,T—T ‘ EAMREDDIM, FoRAAIS 11
lt?(,\p(,&)[q? (x)-- (f} (‘7&\1 So(ps1,) = CFTy = _ofzbﬂl|

:[E\u(npw\-{,q?(Y.)-« ¢(Yn\1 NN-CET womd&y LTI AN N lRDT
PS. of PAC.

P(YP(hY

G, FREE SCUA(AL £ N0
- /zumd)f_x(g T on \?D

o(z) = \/ wl" cos (u,v;j“,;, +1>,“‘). (72)

4 >
CORE WO 2

(@4r\yawy Gm THy Heks v REP

w® ~ A <o. %) w® ~Unif(BY) b0 ~ Unif—, 7] “) Ma(MARKOV PRO(E SJ)
(73)
where BY is a d-ball of radius A. The theory is translation invariant - Z €EF. PeSaTT TUuE — UL 77\/(7 &M
by construction, and so we compute the power spectrum of the two-

point function G*(x — y) to be

GP(p) =

) W) CLASETC ReSULT
et (74) - N
Pam {feles § Susy T Pro(pe

Qach et QW Yo Teud D @“ﬂ“ @ Unt ¢ Fraw

—
The Universal Approximation Theorem (UAT) is the first result in

@ uk'(‘ ¢ (F FN/\} this direction. It states that a neural network with a single hidden

layer can approximate any continuous function on a compact do-

, main to arbitrary accuracy. More precisely, the origin version of the
(b KCXL@/V\ Uau%u v ’& va U/({ /I/C’[S (kﬂ,{} S) theorem due to Cybenko is
i Theorem 2.1 (Cybenko). Let f : R? — R be a continuous function

Q ﬁPM\VT ML P K‘AU on a compact set K C RY. Then for any ¢ > 0 there exists a neural

network with a single hidden layer of the form
2 EM o~y (1) (0) (0) 1
= ZZ“” o(wyz; + b7) + b0, (21)

2)
MULLd ZM/g ? NI /@j e
0= {wf?),wfl), bio), b}, where o : R — R is a non-polynomial non-

linear activation function, such that
sup [f(x) - o(a)] < c. 22)
zeK

The architecture in Eq. (1)) is known by many names, including the
perceptron, a fully-connected network, or a feedforward network.
The parameter N is known as the width. It may be generalized to
include a depth dimension L encoding the number of compositions
of affine transformations and non-linearities. Such an architecture
is known as a multi-layer perceptron (MLP) or a deep feedforward
network.

The UAT is a powerful result, but it has some limitations. First,
though the error e does get better with N, it doesn’t say how many
neurons are needed. Second, it doesn’t say how to train the network:
though there is a point #* in parameter space that is a good approx-
imation to any f, existence doesn’t imply that we can find it, which
is a question of learning dynamics.

To ask the obvious,

Question: Why does this UAT work?

Figure 1: The Universal Approximation Theorem can be understood
by approximating a function like sin(z) with a series of bumps.

In Cybenko’s original work, he focused on the case that o was the

sigmoid function
1

14e =’
which allows us to get a picture of what’s happening. The sigmoids
appear in the network function of the form

o (wlw) -T 4 b§°’) (24)

o(x) =

(23)

which approximates a shifted step function as w® — co. A linear
combination can turn it into a bump with approximately compact
support that gets scaled by w®. These bumps can then be put
together to approximate any function; see, e.g., Fig.
Cybenko’s version of the UAT was just the first, and there are
many generalizations, including to deeper networks, to other activa-
tion functions, and to other domains. See [28] for the original paper
and [29] for a generalization to the case of multiple hidden layers.

“_? o€

[T | (Koo sl)
(IVEN MULTTVARIATE (owTImu(u§

L. To,11" >R
J A REPNESEMTATFIL

Ll x)- zz 8,(29,,00)

w/ C}%rtiolll — R @3:/2 R

CAVEAT: 1M TAS 4)735 Ak w0l GF s

] [0
EY 1 Xy = e o Yy

sin (v, 2+)cz,“) t Sf»\()cgz‘h(l{’)

Ex2 ©
Ex2

240419756 CommeEATS

L%
O mmvy APPLICATIONS
@ =z TMILE METHTIOA (w ,4,(,@)
(3) B- SeLTACS

q> = v, bl +w§?c;2;(x)
CAT. FONGET.
- ST, THebREM ()

N = #= PR2AMS (4
L= TesT o hsE N 4~ N
4= DATA ™M
THEN e inecan B\

b1

ComvRE - D(TZLL(‘_/U/U = _d_

- LDCALIT&/ HELPS

1K

V —

@3 MM\/ VERSION S ! s 4 W12 16734

R

@ 3 swmooTd APPROX'S
V- Hilden)
(W/ ASSL{mﬂf}M} 401 ‘6;,[74, Ix-V)I“Q

(@) Loxs Ltwe aw'

ACTTVATIONG ON EDGES

[DeFmv| (KA A PerTH L [—R™

KOLMOGOR OV - ARNOLD VETWOIK TS
9= 2 460 0 (Ea))
WHER € 4;(0 ACTIUS On EDGES,

N.—
NB b HAS BKRAwS LEARAED

uém‘{— /ZZAL /w[)l‘/wﬁb’\
50«%4@%_:& s :

¢ thun!

KAN = SPARSE MLPBO

SPRSTTy MAD: (D HAS GUAR ANTEE
(3) mAPS AT Fllo ADES —> EDOES

‘MLP BIGT wro™ BAY s,.,Tg
4 L) Q(lﬂ) " oy @ (0
% @ 8 227?:% L‘éh Glbw;;AB(%wa kc;.()
2, @ 2
© ® ©
® ® ® we Mat (RAY, BA?)
N~

|
5 5 ® Ww=AG € det, (Mat))
- 06 0.6
T ST e D B (e
©/ 9 @ 070 U5 (5a0%0)

B P e M. gy R

_ﬂ\)
"MLP SmALL!
7
kKey b=, BA
\Lﬁ“’ﬁ’
kgl kL=l §7H- D

®© ®© © w=AG ¢ dQ*N(MuT‘\)m @ SYMBOLS =
©-0.60 0.8 -
o N Lo e L e ®_ 2
g @ g @ (g o)2 i Oy (EIA\,) Jﬂ) \METHOD| GTuEN DATH SZMAOLIL REGRESSTW
\'m" B Frad) TIVERNAMNE Fews Fo T
PesHAPE b —> ZZ n Qs wirr Fom? 407 BraHER DY
) f) Lim-LEC vsuae Symd REGy
- (€+e K B —
4 CAn WM GUESS
2
SPARSTFY w Sy 4 . o FUNCTTONAL FOR A
(ge1) ((l)> (#)U“ (4) - yes, RUT ITER V’/ GA
Z -B»l?’h 5 |8lah_ 2‘2 ” qn < - R .
/‘{Mj“(”ﬂ' r\!!s(\l%"FiT P;n;\mnH Score }7\
Q MLP SmAace 2 KA §P4f2§ﬁ\Z \)
Figure 2: The structure of LLM-LEx.

VS PAw)Om U TFOL M SPMLQT)}I?

(23
Lanalhrayy: €) Tunesns

kAN -LEx 10 = WrbieER D7

NOTE: opzty KAN PHCRAGE S oS,

Yes - update architecture

< Prune Suggested? >

Data

Fit KAN

Fit edges with LLM-LEx

Simplify Expression

Figure 6: The general structure of KAN-LEx.

Mg Small

2 L
/[/\2 BA/Z B/(/ %N
yara
2
/ XQ
N \ //\)
(M“) o (Q
ch B _ZWL sMO (i [/J be i’\
1 e)g” (1Y Yo B NG
(&m £ $1 A Y/
0w ‘i(ZB,\) bw&,[ob(:jZl bj ;(JC !\a/ >
— -Z AU» J/\
2

~) {
MLP <smAc %Q‘f(= 2— g(((bwclB{SA() j >

