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What is a Foundation Model?
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How we typically think about ML models

Train a specialized model to solve each task
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Foundation Models take a different approach

Pre-train one model that acts as the foundation for many different tasks
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Fine-tuning / zero-shot / few-shot

During pre-training foundation model must learn a good representation of the
data that is useful / transferrable / tunable for many tasks.



What is a Foundation Model? :
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Same Model Solving Many Tasks
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In-Context Learning

Zero-shot

The model predicts the answer given only a natural language

description of the task. No gradient updates are performed.

Translate English to French:

cheese =>

One-shot
task description In addition to the task description, the model sees a single
example of the task. No gradient updates are performed.
prompt
Translate English to French: task description
sea otter => loutre de mer example
cheese => prompt

Few-shot

In addition to the task description, the model sees a few
examples of the task. No gradient updates are performed.

Translate English to French: task description
sea otter => loutre de mer examples
peppermint => menthe poivrée

plush girafe => girafe peluche

cheese => prompt



In-Context Learning

Zero-shot One-shot Few-shot
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The Power of Scale: Large Models, Data, Compute
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The Power of Scale: Large Models, Data, Compute 10
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Problem with large-scale training

Need a lot of (labelled?) data

|s there a way to train neural
networks without the need for
huge manually labeled datasets?

Self-supervised learning
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What does this have to do with HEP?



Al and Fundamental Physics Have Similar Aims 2

Generate plausible, high-dim. data from high-level concepts
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Al and Fundamental Physics Have Similar Aims 3

Generate plausible, high-dim data Extract high-level concepts
from high-level concepts from low-level, high-dim. data
Prompt:

Street style photo of a woman Classification:
selling pho at a Vietnamese street A photo of guacamole, a type of food

market, sunset, shot on fujifilm




Massive and High-Quality Scientific Data y

Exabytes of Experimental Data High Quality Simulators allow us to explore
from Large-Scale Experiments new hypothetical models of the universe
— much more than used for ChatGPT — perfect training data for Al



Sort of already have a HEP Foundation Model?

15

Reconstruction at a collider turns energy depositions in particle properties

Reconstruction works, and can be tuned (a bit), for essentially all analyses!

Reconstruction

Multi-modal

Pattern
Recognition

100 M- dimensional O(1k-10k) high
multi-modal data level patterns

Dark Matter

Matter &
Antimatter

Origin of Mass



How Big Should the ML Components be?

16

ML is already been infused into this reconstruction pipeline

How big / how much ML should we be using?
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learnable blocks
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Human designed algorithms
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learnable blocks

Mixing some ML with

Bigger ML blocks, connected by
small pieces of human designed algos

Human designed algorithms



Does HEP Foundation Model mean one BIG neural Network?

| don'’t believe this will work...

Or at least it won’t work with any “reasonable” model size, data size, compute

learnable blocks

o

Hits > Higgs: Yes? No?



Does HEP Foundation Model mean one BIG neural Network?

2508.19190

Some have tried...

success (if possible) likely requires a huge amount of data

Still enormous gap between using only hits

and using some physics knowledge

AUC @ Ntrain (k)

Model Input

8 18 38
MLP?* (full detector) Reco obiects 0.960 0.951 0.959
MLP® (only b-jets) ) 0.859 0.834 0.848
ParT® (full detector) Reco objects - — 0.972
Higgsformer-small (only inner tracker) : 0.704 0.757 0.779
Higgsformer-small (augmented, only inner tracker) [ Raw detector h1ts] 0.721 0.764 0.792

Transformers classifiers operating only on hits


https://arxiv.org/abs/2508.19190

The Structure of Particle Physics 19

“Inverting the Generative Model”:
Choosing our intermediate representations based on known physics

N
Tracking [Jet CIustering] [ Jet (Tl\a/Ing)mg J
d [ Particle Flow J Event Reco Event Classification
g
Calorimeter (ML) Particle ID (ML) (ML)
Clustering (ML)
J
] |\ )
| |
Energy Deposits = Observable Particles Observable Particles = Hard Scatter States

There are raw data challenges in HEP, tracking, clustering, particle flow,
neutrino physics, cosmology...

Deep learning on low level data is part of the story, but not the whole story
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The Bitter Lesson

Rich Sutton

March 13, 2019

The biggest lesson that can be read from 70 years of Al research is that general methods that leverage
computation are ultimately the most effective, and by a large margin. The ultimate reason for this is
Moore's law, or rather its generalization of continued exponentially falling cost per unit of

CO!

o Researchers seek to leverage their human
CcO

o] knowledge of the domain, but the only thing that
% matters in the long run is the leveraging of compute

psy

approach tends to complicate methods in ways that make them less suited to taking advantage of
general methods leveraging computation. ...

The Unreasonable Effectiveness of Mathematics
in the Natural Sciences

Richard Courant Lecture in Mathematical Sciences delivered at New York University,
May 11, 1959

EUGENE P. WIGNER

Princeton University

“and 1t is probable that there is some secretl here
which remains to be discovered.”” (C. S. Peirce)



Foundation Model For Science? ’

Defining Foundation Models for Computational
Science: A Call for Clarity and Rigor

Youngsoo Choi, Siu Wun Cheung, Youngkyu Kim, Ping-Hsuan Tsai, Alejandro
N. Diaz, Ivan Zanardi, Seung Whan Chung, Dylan Matthew Copeland, Coleman
Kendrick, William Anderson, Traian lliescu, Matthias Heinkenschloss

SPECIALIZED FOUNDATION MODELS STRUGGLE
TO BEAT SUPERVISED BASELINES

Zongzhe Xu,* Ritvik Gupta,” Wenduo Cheng, Alexander Shen, Junhong Shen
Carnegie Mellon University

{zongzhex, ritvikgu, wenduoc, ajshen, junhongs}@andrew.cmu.edu
* denotes equal contribution; order decided by coin flip

Ameet Talwalkar Mikhail Khodak
Carnegie Mellon University & Datadog, Inc. Princeton University
talwalkar@cmu.edu mkhodak@cs.princeton.edu



Foundation Model For Fundamental Physics

22
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Different data analysis goals often share similar pattern recognition

..., MK, 2401.13537

needs

Can we build tools that can generalize across tasks & even experiments?


https://arxiv.org/abs/2401.13537

Why Use this Strategy in Fundamental Physics? 2

Reusable - One backbone used for several tasks.
Fine tune for different data analyses, experiments, detector designs

Train on huge real data - Leverage experimental data

Uncertainty reduction - Reduce dependence on simulation-based training

Leverage multi-modal methods- Combine data from different detectors to
address more complex tasks



The Challenge of Systematic Uncertainties ”
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Can Pre-training Strategies Help?

25

Learn representations with
reduced sensitivity to
simulator variations?

Pre-training on real data?

Pre-Training — Fine-tuning — Inference
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Towards Optimizable and More Automated Data Analysis 2%

Object-level (Reconstruction) Population-level
/ . \ / Event Selection \
Foundation Model : ’ g T
Structured Signal e
) L Discrimination ) q
Pre-trained ) . ;
: Statistical | _xe e soas o
Flne_tunable anaalljslics:a 0 —5:0 T4 60 80 100
K\ )/ O oo [pb]
Pre-trained, generalized tools - Fully optimizable analysis |-z W _ =
End-to-End Fine-Tuning for each data analysis o
More optimal, rapid, and broad searches & measurements .



What this approach can mean

27

Never have to retrain my own neural networks from scratch
* Existing pre-trained models would already be near optimal, no matter the task

Practical large scale Deep Learning even in very few example regime

If the information is embedded in a space where it becomes linearly
accessible, very simple analysis tools are enough for downstream analysis

Could it even mean?

Single pre-trained model which can operate on any input data type
* | no longer need to worry about what network to use on some data

Deep understanding of the data, informed by cross-modal information
* A downstream task could be specified with just a few examples
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Representation Learning
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"l stand at the window and see a house, trees, sky. Theoretically | might say there
were 327 brightnesses and nuances of colour. Do | have "327"? No. | have sky,
house, and trees.”

— Max Wertheimer, 1923



30

“Al must [...] learn to identify and disentangle the underlying
explanatory factors hidden in the observed milieu of low-level
sensory data”

“representation learning [means] learning representations of the
data that make it easier to extract useful information when
building classifiers or other predictors”

Y. Bengio, A. Courville, P. Vincent,
Representation learning: A Review and New Perspectives, 2012



https://arxiv.org/abs/1206.5538

Representations

31

Compact mental
representation



Representations
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What Makes a Good Representation? %

Make subsequent problem solving easy

Compact
* Contains only the essential information, removing redundant details.

Predictive
* Being able to take actions that achieve desirable future outcomes.

Disentangled

* Each dimension represents a distinct attribute.
“Representation Learning”, Bengio,
Courville, Vincent 2013

Interpretable
* [t would be good if we human can understand it!

Transferability

* |deally, one rep. to make all later problems (that human cares about) easy!


https://arxiv.org/abs/1206.5538
https://arxiv.org/abs/1206.5538

What is a Representation? 9

Representation z is an abstraction of data x mapped by an encoder function f

Data space Representation space

Encoder

Embec;ding

Image Credit: Foundations of Computer Vision



https://visionbook.mit.edu/

Classic Object Detection

35
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Deep Learning
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What is Representation Learning?

37

Typically find encoder through optimization of an objective or loss L[]

Representation learning is about designing encoders and objectives

Data space Representation space

min L[f (x)]

Encoder E
Embedding

Image Credit: Foundations of Computer Vision



https://visionbook.mit.edu/

What Do Deep Nets Internally Learn? s

1311.2901



https://arxiv.org/abs/1311.2901

Deep Learning

39

Learned Intermediate Representations represent those in traditional pipeline




Representations from Deep Neural Networks

40

\i‘ . -----#Class

Representation Representation Representation Representation

Hard to interpret
Build multiple levels of representations
Reduce domain knowledge and feature engineering

Deep representations are transferrable



Learned Representations are Transferrable “

One of the most important discoveries of the deep learning revolution

Transfer learning:
* Pre-train on large-scale data
* Fine-tune on small-scale data

* Enabled deep learning for small datasets
* Revolutionized computer vision

* Taking a supervised pre-trained ResNet
and fine-tuning it for new tasks /dataset i v
totally changed how people could used models fine-tune

DeCAF: A Deep Convolutional Activation Feature for Generic Visual Recognition, 1310.1531
_ _ _ N Visualizing and Understanding Convolutional Networks, 1311.2901
Slide credit: Isola, Freeman, Li, Intro to Computer Vision CNN Features off-the-shelf: an Astounding Baseline for Recognition, 1403.6382



https://arxiv.org/abs/1310.1531
https://arxiv.org/abs/1311.2901
https://arxiv.org/abs/1403.6382
https://introtocv.github.io/index.html

How do you learn a representation? 0

Broadly two approaches, Compression and Prediction

Learning Learning
Method Principle Short Summary
Autoencoding  Compression Remove redundant information
Contrastive Compression  Achieve invariance to viewing transformations
Clustering Compression Quantize continuous data into discrete categories
Future prediction  Prediction Predict the future
Imputation Prediction Predict missing data

Pretext tasks Prediction Predict abstract properties of your data

Torralba, Isola, Freeman, Foundations of Computer Vision



https://visionbook.mit.edu/

How do you learn a representation? o

Data Compression

»#‘H—D

Data

Label Prediction

Data

Data Prediction,
i.e. Self-Supervision

Data

‘H_’ ’ T ‘H_’ = | = A

Some data Other data



Self-Supervised Learning

44

Common trick:

Convert “unsupervised” problem
into “supervised” empirical risk
minimization

Do so by cooking up “labels”
(prediction targets) from the raw
data itself — called pretext task



How to evaluate the quality of a representation? s

Dimensionality Reduction & Visualization

tSNE visualization
of MNIST dataset

L ] + @ ® 3
O©C O~NOOOPWN-—=-O




How to evaluate the quality of a representation?

46

Dimensionality Reduction & Visualization

Figure 1: Visualization of the first PCA components. We compute a PCA between the patches of the
images from the same column (a, b, ¢ and d) and show their first 3 components. Each component is matched
to a different color channel. Same parts are matched between related images despite changes of pose, style
or even objects. Background is removed by thresholding the first PCA component.

2304.07193


https://arxiv.org/abs/2304.07193

How to evaluate the quality of a representation?

47

Check downstream task performance of features
Train small “linear probe” on top of representation

Fine-tune network for some downstream task
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Learned Representation
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Transformers



Transformers

49

Starting from the idea of using attention to Probabilities
enable recurrent neural networks to look Softmax
across inputs while processing a sequence *

Linear
N

Add & Norm
N

Feed-Forward

T

|
Add & Norm

Repeat for number
of encoder blocks

Block

Add Position
Question: why do we need RNN at all? Embe,lqdmgs

Attention is all you need Embeddings



https://arxiv.org/abs/1706.03762

Scaled Dot-Product Attention

50

Attention (Q, K, V) = softmax V
) )
\/E

Query Key
Q1 (k1)
Q — : K = :

q_:n’ nXxd \Em) mXxd

Q = Rn.xd
where K € RmXd
V € R™ X dy
Value
U1
v=| :
Um m X dy

Project input Query onto Key to compute weights for corresponding Value

Return the weighted value



Scaled Dot-Product Attention

51

Q = RnXd

KT
Q@ VvV where K € RmXd

Attention (Q, K, V) = softmax
\/a V € RTnXdU

Self-Attention: Q
Use input X to define Q,K,V

O W_Q: Query weights

O VW_K: Key weights

O w_V: value weights

0.7 0.2 |60.1 O d_k: attention head size

Attention socres

——p» ©.65( 0.8 | 0.05

W_K
X K = X*W_K 0.05( 0.2 |0.75

"I" S = softmax(Q*K_T/Jd_k) Attention output (s*V)

"love > ng
’< — X W "tennis" — "love"
K Input Embeddings "tennis"

WV Context Embedding

V = X*W_V
vV =XW, -




Attention Visualization 2
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BertViz


https://arxiv.org/abs/1409.0473
https://github.com/jessevig/bertviz

Transformer Encoders vs Decoders -

Causal Masking

Transformer decoder uses causal masking We can look at these

(not greyed out) words

. . \
* When processing an input, can only look at B \

1 1 ’\P‘Q\ e S O
previous Inputs © S
e Can only “look into the past”

[START]

J—

The

For encoding
these words

chef

Transformer encoder doesn’t use masking

* “Bi-directional” context, i.e. can look at all the -
inputs at every step

e Can “look into the future”

who




Data Order »

Self-attention is permutation invariant
* Great if your data is a set ... Not so great for sequences

If we want / need order information must build it in ourselves,
we need to encode the order of the sentence in our keys, queries, and values.

Represent each sequence index as a vector
p; € R%, fori€{1,2, ..., n} are position vectors
* Easy to incorporate this info into our self-attention block: add p; to our inputs!

* Let xi is the embedding of the word at index i. The positioned embedding is:

~ Typically just do this at the first input layer
Xi = Xi T Pi



Absolute Positional Encoding s

Pros:
* Periodicity indicates that maybe sin (10000575,,10@1 ) if i is even
absolute position” isn’t as PE(pos i) =
~ cos P22 if 7 is odd
Important 100000~ D/ modet )

* Maybe can extrapolate to longer
sequences as periods restart!

O PEEETNY 1.00
J 075
‘
Cons: AL
. L
o +0.50

* Not learnable
 Extrapolation doesn’t work well!

Dimension



Absolute Positional Encoding

Dot product between positional encoding vectors PE, - PE,
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Learnable Positional Encoding

57

Learned absolute position representations:

Let all p; be learnable parameters!
Learn a matrix P € R**™ and let each p; be a column of that matrix!

Pros:
* Flexibility: each position gets to be learned to fit the data

Cons:
* Definitely can’t extrapolate to indices outside 1, ..., n.

Many systems use this!



Relative Positional Encoding 56

Want attention to only depend on relative position (i — j)

Relative positional embedding should be function f(x, i) such that

f, ) -f,j) =gy i—))

we we
know
know we Know
\L——\
Position independent Embedding ) Embedding )
embedding “of course we know” we know that

Rotate by ‘2 positions’ Rotate by ‘0 positions’



2104.09864

RoPE: Rotary Position Embedding 5

Instead of adding absolute position, multiple by “rotation” matrix

f{q,k} (mma m) = Rd@,mw{q-,k}mm

cosmb, —sinmb, 0 0 0 0 \
sinm#;  cosmb, 0 0 0 0
0 0 cosmby —sinmés 0 0
Rde _ 0 0 sinmfy  cosmbs 0 0
: : [ 3
0 0 0 0 cosmbys  —sinmby)s E X's \m '
\ 0 0 0 0 -o- sinmb)s cosde/Q) 0 "
i - Xz L
: (% > x. X (x'1, x*2) :
: R 1 1 | 8
: m :
. d o . g L e N O R R :
ah.kn = (Rg mWWoxn)"(Rg ;Wixy,) =W Rg ,, Wiz, X — —
erhanced (T - 0 T -+ [
Transformer | | [ | |eee [ | 2 Y - - LI
with [T -+ T 3 SN N I (L I
Rotary [T+« [T TR 4 I 0 W T D o
position [T -~ [T CII17--CI T
Embedding [T [ [ ]+« [] 6 [0 0 O O R W B T
Query / Key Position Position Encoded Query / Key



https://arxiv.org/abs/2104.09864

What about other Modalities? Vision Transformer o

Transformer Encoder

A

Vision Transformer (ViT)

Class , L x

Bird MLP
Ball < Head

Car

MLP

|

Norm

Transformer Encoder

i
[
[
[
[
[
[
[
S s v
ey I 1
e - G Q) ) ) 66D 6) -H D | (B
l
I
I N <
[
i

* Extra learnable ' I '

[class] embedding Lmedr PI'O_]CCthIl of Fldttened Pdtches
Norm

b I . A0
Whas s
) Tl

Patches

Embedded ]




Vision Transformer - Patches as Tokens

61

e e e ) -H@é

* Extra learnable

[class] embedding Linear Pr0_|ect10n of Fldttened Patches

'

|}

Vision transformer processes an image like a sequence

Tokens formed from taking patches of the image
patch — flatten — linear transformation

These are not “discretized” tokens, linear projections can be anything



Test Loss
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https://arxiv.org/abs/2001.08361
https://arxiv.org/abs/2102.06701

63

Self-Supervised Learning



Self-Supervised Learning

64

Making the World Differentiable: On Using Self-Supervised Fully
Recurrent Neural Networks for Dynamic Reinforcement Learning

and Planning in Non-Stationary Environments

Jirgen Schmidhuber*
Institut fir Informatik
Technische Universitat Miinchen
Arcisstr. 21, 8000 Miinchen 2, Germany
schmidhu@tumult.informatik.tu-muenchen.de.

[Schmidhuber, 1990]

Supervised

- implausible label

COwW

Target

000
13
®

o
O O ﬂO O
Input

Self-Supervised

- derives label from a
co-occuring input to

another modality
B
0\6 (o) o) 510
z .
0 0,00 O 000
ln;{n}xl ) ln;{n}n 2
Mmoo

[Virginia Da Sa, Learning Classificaion with Unlabeled Data, Neur|PS 1993]



https://proceedings.neurips.cc/paper/1993/file/e0ec453e28e061cc58ac43f91dc2f3f0-Paper.pdf
https://proceedings.neurips.cc/paper/1993/file/e0ec453e28e061cc58ac43f91dc2f3f0-Paper.pdf
https://people.idsia.ch/~juergen/FKI-126-90_(revised)bw_ocr.pdf

Self-Supervision

65

Self-supervision:
Train a model to answer procedurally generated questions about the data.

Good:

* Can procedurally generate potentially infinite amounts of annotation.
* We can borrow tricks from supervised learning without labels.

* Focus on only the information that you need (e.g., not pixels).
* Answering these questions requires more fundamental understanding of data.

Not so good:

* designing good questions also requires some fundamental understanding of the
data (e.g., structure).



Self-Supervised Learning and Fine-Tuning "

/ Step 1: Pre-training\
- |
o 0
e 2 50 —» [RENEISEEXE Pretext Task
N’ O | Objective
Un-Labeled = fask

specific
\ Data . head /

Trained Backbone Model

<----

Step 2: Fine-tuning
R Q
= Downstream
— 3 o Downstream Task
— ~ Objective
- s m k
Labeled g8 fask
Data specific

head



Classes of Self-Supervision
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]

Decoder
g(x)
Loss
@ | o]
Encoder
f(x)

. J Ly ]

“Generative” like approaches

Compare at “pixel” / "token” level

Loss
L(zy, zy)
(= = ]
[ Predictor ] [ Predictor ]

) ]

[

“Predictive” like approaches

g

y

Compare at representation level



Generative vs Predictive (& Contrastive) vs Supervised Approaches 6

Generative Approaches
* Aim to generate missing or corrupted data in original input / token space
* Criticism: may require learning very fine and often irrelevant details or noise

Predictive Approaches
* Make and compare predictions in (learned) representation space
* Criticism: Only can learn encoder, can’t generate data

* Criticism: Often requires choosing good augmentations
and/or lots of negative examples

Supervised Approaches
* Learning representation required to solve a labelled supervised learning task
* Criticism: Requires lots of labelled data, hard to scale

* Criticism: If supervised objective not general enough, learn representations that
are not generally useful and are hard to adapt / fine-tung to new tasks



Towards SSL & Foundation Models in HEP - Sep. 2025
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Contrastive
* JetCLR - symmetry augmentations

e R3SL - re-simulation

* RINO - clustering augmentations
with DINO distillation

Joint Embedding Predictive
Architectures (JEPA)

* J-JEPA - cluster particles into subjets

e P-JEPA - use random masks
* HEP-JEPA - blocks of particles

Generative

* Mask particle type prediction
* Mask Particle Modeling [1, 2]
* Next Particle Token Prediction

Supervised

* Supervised classification and
generation

* Large-scale fine-grained
classification



https://arxiv.org/abs/2108.04253
https://arxiv.org/abs/2108.04253
https://arxiv.org/abs/2403.07066
https://arxiv.org/abs/2403.07066
https://arxiv.org/abs/2509.07486
https://arxiv.org/abs/2509.07486
https://arxiv.org/abs/2412.05333v1
https://arxiv.org/abs/2412.05333v1
https://arxiv.org/abs/2412.05333v1
https://arxiv.org/abs/2412.05333v1
https://indico.cern.ch/event/1386125/contributions/6139666/
https://indico.cern.ch/event/1386125/contributions/6139666/
https://indico.cern.ch/event/1386125/contributions/6139666/
https://indico.cern.ch/event/1386125/contributions/6139666/
https://arxiv.org/abs/2502.03933
https://arxiv.org/abs/2502.03933
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https://arxiv.org/abs/2502.03933
https://arxiv.org/abs/2312.06909
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https://arxiv.org/abs/2401.13537
https://arxiv.org/abs/2409.12589
https://arxiv.org/abs/2403.05618
https://arxiv.org/abs/2403.05618
https://arxiv.org/abs/2404.16091
https://arxiv.org/abs/2404.16091
https://arxiv.org/abs/2404.16091
https://arxiv.org/abs/2405.12972
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https://arxiv.org/abs/2405.12972

A note about data: Jets

70

. YATLAS

EXPERIMENT

Jet = Unordered set of particles

Each particles has a list of features:

Particle = {momentum, direction, position, ...

~=

t—-UWb—-qgqgb

1909.12285


https://arxiv.org/pdf/1909.12285.pdf
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Contrastive Learning



Contrastive Representation Learning

72




Contrastive Representation Learning s

@ ~

4 1 reference

xt positive

I  negative

p 5 >y

Strategy: Given input & set of examples,
determine which examples are different and which are similar (an augmentation)



A formulation of contrastive learning

74

Encoder model f(-) embeds and give representation of data, we want:
Score(f (x), f(x*)) » Score(f(x),f(x7))

x =reference sample, x* = positive sample, x~ = negative sample

Want to learn an encoder function f(-) that gives
High score for positive pairs (x, x™)

Low score for negative pairs (x,x™)



A formulation of contrastive learning

75

A loss function with 1 positive sample and N-1 negative samples

L=—[EX

log

exp (s(f(x), f(x1)))

exp (s(f(x),f(x+))) + 29’:_11 exp (S (f(X):f(xj_))) |

Score for positive pair Score for N-1 negative pairs




A formulation of contrastive learning 6

A loss function with 1 positive sample and N-1 negative samples

exp (s(f(x), f(x1)))

L = —Ey |log
exp (s(f(x),f(x+))) + 29’:_11 exp (S (f(X):f(xj_))) |

Cross-entropy loss for N-way softmax classifier:
Learn to find positive sample from N samples

Also known as InfoNCE loss [1807.03748]

lower bound on mutual information:  1(f(x), f(x*)) — LogN > —L
[1905.06922]



https://arxiv.org/abs/1807.03748
https://arxiv.org/abs/1905.06922

What'’s going on here? Invariance perspective

77

Want embedding of two views (x, x*) to be as similar are possible

So embeddings need to be insensitive to effect of the augmentations
*i.e. identify that it is the same underlying object

Pushes model to learn embedding that are invariant to augmentations

Choosing good augmentation becomes critical!
* Want to be invariant to irrelevant details
* Want to be sensitive to important semantic information



SImMCLR: A simple framework for contrastive learning s

Score function is cosine similarity

ulv

lullllvl

s(u,v) =

Encoder f(-) computes representation h

Projection network g(:)

* Project feature to space where contrastive
learning is applied

* Separates making representation from loss

Generate positive samples with
augmentation: crop, blur, color distort, ...

Maximize agreement

h; +— Representation —» h;

[2002.05709]


https://arxiv.org/abs/2002.05709

SImMCLR Augmentations 7

. D
' Al B o
““““““““““ C)
(a) Global and local views. (b) Adjacent views.
Original Crops can be overlapping or not. : ;
2 Crop and resize Gaussian blur

SimCLR uses many different augmentations
(more than methods prev. models)

Started trend of using augmentation to drive
SSL

Color distort. (drop) Color distort. (jitter)



SImMCLR: A simple framework for contrastive learning a0

70.0
67.5
050 Linear evaluation on image
62.5 classification
i
2 60.0
" . Batc“;'sze SimCLR works best with
| - 512 large batch size and long
>>:0 e Ui training times
s 2048
52.5 4096
w8192
50.0 ENEEEN EnEEey

100 200 300 400 500 600 700 800 900 1000
Training epochs

Figure 9. Linear evaluation models (ResNet-50) trained with differ-
ent batch size and epochs. Each bar is a single run from scratch. '

[2002.05709]


https://arxiv.org/abs/2002.05709

JetCLR

SimCLR was among the first SSL methods
applied to HEP data, specifically for jets

Physics inspired augmentations
* Translations
* Rotations
* Soft-splitting
* Collinear splitting

Tested with linear classifier head on top of
frozen backbone

|s there a general way to generate
physics-driven augmentations?

Constits

Jet images

EFPs (d<
AUC: 0.972

Top-tagging

Linear classifier test

JetCLR
AUC: 0.980

0+
10%070

0.2

0.4

08

1.0

2108.04253


https://arxiv.org/abs/2108.04253

Re-Simulation Based Self-Supervised Learning

Simulators hold domain knowledge
— generate plausible outcomes of experiment

g
+ l?igzj ‘{{,ﬁﬁ'* h.oe.
+ Bl ~ vip)

Theory Interaction Evolution Detector

2403.07066 HEP high-fidelity multi-step stochastic simulator


https://arxiv.org/abs/2403.07066

Re-Simulation Based Self-Supervised Learning o

2403.07066

0.6 -04 -02 0.0 0.2 .
n relative to jet axis

Interaction Evolution

HEP high-fidelity multi-step stochastic simulator

Detector


https://arxiv.org/abs/2403.07066

Re-Simulation

84

2403.07066

¢ relative to jet axis
| |

Based Self-Supervised Learning
06k E
. T
- | 7T '<
b

=

) ;@7(}) LA

+ ¥y g be

+ B~ v (p)

Theory Interaction Evolution

HEP high-fidelity multi-step stochastic simulator

Detector


https://arxiv.org/abs/2403.07066

Re-Simulation Based Self-Supervised Learning

85

2403.07066
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HEP high-fidelity multi-step stochastic simulator

Re-simulate


https://arxiv.org/abs/2403.07066

Re-Simulation Based Self-Supervised Learning s

2403.07066

¢ relative to jet axis
| |

0.8
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06l

0.6 -04 -02 0.0 0.2 0.4
n relative to jet axis

Interaction

Same Sim.

/

Change Sim.
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¢ relative to jet axis
Lo
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L
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Out of Domain

~04 02 00 02 04
n relative to jet axis

Change Sim,
re-simulate

HEP high-fidelity multi-step stochastic simulator


https://arxiv.org/abs/2403.07066

Re-Simulation Based Contrastive Learning .

2403.07066 Contrastive Loss

A b

b b

Nominal Nominal
scenari‘o/\ Re-simulation SCe"arﬁ/\ Re-simulation
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% Graph Bwldmg ° Graph Bulldlng
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* Graph Representations * + Graph Representations +
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Sample one * * Sample one
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__HEN

m— pOSitive pair

m— negative pair


https://arxiv.org/abs/2403.07066

tSNE Visualization of Pre-Trained Representations s

e gluon » QCD nominal
e quark e QCD herwig
H H nominal

Class separation & alignment of representations across domains

2403.07066


https://arxiv.org/abs/2403.07066

Fine-Tuned Performance

89
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2503.11632



https://arxiv.org/abs/2503.11632
https://arxiv.org/abs/2403.07066

Sensitivity to Simulator Variations 00
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Some reduction of sensitivity to simulator variations for some learned features

Far from robust... still a lot of work needed on systematic uncertainty robustness



Momentum Contrastive Learning (MoCo)
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Difference to SImCLR
* Running queue of keys (negative samples)

* Only update encoder through query

* Decouple mini-batch size with num. keys
— Can support large number of samples

* Key encoder is slowly progressing:
momentum update rule
O <« mb, + (1 —m)b,

...enter EMA (exponential moving average)

contrastive loss no_grad
A

> similarity < /

q ko k1 ko ...
) queue
momentum
encoder o
A
ke ke ke
xquery xO Yy xl A 4 ZL’2 ) 4

1911.05722


https://arxiv.org/abs/1911.05722

What's the deal with the EMA? -

Why would comparing a model with EMA of itself drive learning?

Lo = —log ic:cp(q-/kur/’r)
> i—oexp(q-ki/T)

Contrastive loss like mapping encoded query g onto dictionary of encoded
keys k;, and want to learn to find positive key k.

Claim: if the key encoder is changing too rapidly, ensuring similarity
between encoded query and key becomes challenged

— Want a slowly evolving key encoder

| still struggle to understand why this works... But it seems to

1911.05722


https://arxiv.org/abs/1911.05722

Knowledge Distillation

93

Teacher Model
(large neural network)

Student Model

Softmax: yi(xi | 1) I

Knowledge Distillation is a process
of transferring knowledge from a
NN teacher to a NN student of

equal or smaller size.

Teacher softmax out considered a
soft classifier target for the student
model with Cross-Entropy loss:

L= 9(xl0)logyxil)

Where t is temperature parameter



Dino: Self-Distillation with No Labels

Train encoder (student) by comparing _pi‘}:;pl
sg

predictions to EMA of encoder (teacher)

* Different augmentation in student and softmax softmax

teacher '

centering

* Global and patch views :

cma
student gg — | teacher gg

Compare softmax predictions e @
* No contrastive loss 6
* Compare augmentations against each
other like SimCLR o8,
R B .
Notably, no negative samples needed! ﬁQJ



Dino: Self-Distillation with No Labels
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This works strikingly well!
Unsupervised object segmentation

Emerging Properties in Self-Supervised Vision Transformers

Mathilde Caron’?  Hugo Touvron!®  Ishan Misra!  Hervé Jegou!
Julien Mairal>  Piotr Bojanowski’ ~ Armand Joulin'
! Facebook AI Research 2 Inria* 3 Sorbonne University

In this paper, we question if self-supervised learning pro-
vides new properties to Vision Transformer (ViT) [16] that
stand out compared to convolutional networks (convnets).
Beyond the fact that adapting self-supervised methods to this
architecture works particularly well, we make the follow-
ing observations: first, self-supervised ViT features contain
explicit information about the semantic segmentation of an
image, which does not emerge as clearly with supervised
ViTs, nor with convnets. Second, these features are also ex-
cellent k-NN classifiers, reaching 78.3% top-1 on ImageNet
with a small ViT. Our study also underlines the importance
of momentum encoder [26 ], multi-crop training [9], and the
use of small patches with ViTs. We implement our findings
into a simple self-supervised method, called DINO, which
we interpret as a form of self-distillation with no labels.
We show the synergy between DINO and ViTs by achieving
80.1% top-1 on ImageNet in linear evaluation with ViT-Base.

Figure 1: Self-attention from a Vision Transformer with 8 x 8 patches trained with no supervision. We look at the self-attention of
the [CLS] token on the heads of the last layer. This token is not attached to any label nor supervision. These maps show that the model
automatically learns class-specific features leading to unsupervised object segmentations.



RINO: Renormalization group Invariance with NO labels
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SSL training with DINO framework, but using k;-clustering history as the
augmentation method for jets
k.-clustering steps interpreted as probing jet at different resolution scales
* Augmentations from n-prong subjets from k;-clustering
By training model to be approximately invariant under examination at
different steps of k;-clustering — model learns invariance to resolution scale
2509.07486
Model size Strategy JETCLASS Accuracy | JETNET Accuracy
ks *— nano Supervised 0.601 & 0.060 0.910 £ 0.001
® o nano RINO-Linear 0.796 = 0.003 0.858 £+ 0.001
e T nano RINO-MLP 0.710 £ 0.052 0.859 £+ 0.002
® A e Tite Supervised 0.551 & 0.038 0.910 £ 0.001
® ) lite RINO-Linear 0.776 = 0.005 0.862 £+ 0.003
LR & M N lite RINO-MLP 0.699 £+ 0.025 0.867 £+ 0.002
mini Supervised 0.595 £ 0.049 0.910 = 0.001
mini RINO-Linear 0.772 £ 0.006 0.872 +0.003
- mini RINO-MLP | 0.803 + 0.019 0.871 4 0.003
= - =l e base Supervised 0.629 + 0.062 0.910 £ 0.001
base RINO-Linear 0.766 = 0.010 0.877 4+ 0.002
s base RINO-MLP 0.752 £ 0.008 0.879 £+ 0.003



https://arxiv.org/abs/2509.07486
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Masked Modeling



Masked Language Modeling
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Strategy: Mask some elements of input sequence, then predict missing tokens

eating walking

Z00

e 15% | 5% 0%
Prediction
A
A A A A
RoBERTa
Language Model

Random T T T T T
Masking The cat IS [MASK] some
Input The cat is eating some

food

food

Image credit: 2104.01642


https://arxiv.org/abs/2104.01642

Masked Language Modeling (MLM) 0

What is the model learning?

Let x = input, and x;; = inputs with some items masked
p(x | xp)

Training target: masked token probability given unmasked tokens

When applied, all tokens unmasked
Why is the representation useful for unmasked tokens at inference time?

Encourages learning a contextualized meaning, not a meaning in isolation.
Once learned, contextualized meaning useful for all tokens.



Masked Image Modeling

+ Unused During Reconstructed i
Visual Tokens . Pre-Training Image i
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https://arxiv.org/abs/2106.08254
https://arxiv.org/pdf/2208.06366

Masked AutoEncoder (MAE)

MAE only encodes unmasked elements. Decoder also see masked tokens

Significantly more scalable that MIM, since only encode small fraction of inputs

encoder

‘l
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D

Q

o

Q

()

=
HEE-EEEEEEEEEEEE

2111.06377


https://arxiv.org/abs/2111.06377
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Aside: Tokenizing Continuous Data



Discretizing Tokens with Vector Quantized (VQ)-VAE .

- ——— -

Codebook \‘.
Embeddings ! |
Vi Ve Vs V-2 Vi1 Vi,
KxD = Semememmmmm e e~
v
Nearest l,-norm
Neighbor

F(x) Ze(x) Lookup Zq(x) G(2)

12 23 34 45

VIT o bmome(y BT s a8 p(xlzy (1))

34 78 789 100
99 888 777 666

Tokenizer VN x*D - NxD

Ercoden Visual Tokens Decoder

Straight-Through Gradients

Input Image

VAE but (a) only discrete set of latent vectors allowed, (b) deterministic



VQ'VAE 104

Latent vector z, determined by
closest codebook vector e; to q(z = klz) = {
encoder-vector z,

1 for k=argmin;||z.(x) — €;|2,
0 otherwise

Loss is a combination of usual MSE
reconstruction loss, updates to

zq(z) = ex, where k = argmin;||z.(z) — €;l|2
codebook, and updates to encoder

Discretization is non-differentiable
" Straight-through estimator on L = logp(z|zy(x)) + [Iselze(@)] — ell3 + Bllze(z) — sglel 3,

reconstruction to get encoder grads
* Additional losses to learn codebook \ /

“stop-gradient”



Training with a Straight-Through Estimator

e
dL  OL 0x' 0zq 0z, z 0@ VL

OF ~ 9x' dzq 8z, OF

Z,(x)

z,(x) ~ q(zlx)



Training with a Straight-Through Estimator

1
0L _ 0L dx' 07,0z, _ 0L

~y

Z(x)€ VL
—

OF  0x' dzqfze OF ~ OF il
|_'_I
Straight-Through
z,(x) ~ q(zlx)

lgnore gradient of discretization step



Codebook Collapse

Frequency
used for
encoding

During training, when examining the frequency of selecting codebooks elements
Often observe “codebook collapse”: only few of the codes are selected and used

Require careful initialization of codebook vectors, and re-initializing un-used
codebook vectors during training time

* Not going through all the tricks now... see 2305.08842 ... Bear in mind when training!



https://arxiv.org/abs/2305.08842

VQ-VAE Seems Painful... Why do we want it?

A. For vision-language models... language space is tokenized. If we
want to “talk” to images, we probably need to tokenize them

B. Even outside language, transformers operate very well
sequences of discretized tokens... is it absolutely needed? Is it a
secret inductive bias? Not totally clear

C. Practical: Easier to predict discrete tokens / categorical
posteriors
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End Aside



Masked Particle Modeling

Mask individual particles and predict their properties
* 40M parameter backbone model with 100M jets for pre-training

110

C2 Cq

r 1

Masked Prediction Head]

Ak | 4] [ 7
T Weird thing we might want:
Permutation invariant backbone
[ MPM Backbone }
Why?

A Particles are an unordered set
V/— ones — PEER

Original Jet Set of Particles Mask




Masked Particle Modeling

Mask individual particles and predict their properties
* 40M parameter backbone model with 100M jets for pre-training

Cross Entropy Loss

Codebook : - s - - C
Index 2 ! Order Data
Discretize T 1 — 1
] Masked Prediction Head]
Learning | |
Targets Target Tokenizer S\ (A | ha) < | + 4—[ pr||p2 )| P3| s J
Discretize Additional model T "
(frozen) to define labels
[ MPM Backbone }

T T Positional
Embedding
N/—» HINID \—»[/vm +mz]

Original Jet Set of Particles Mask




Challenges

1) Particle Features (momentum, position, ...) are not discrete:

. IIE:p(zlx) [Z]
Regress continuous values? p(z|x) :

In multi-modal distributions regression
may not provide a useful prediction




Challenges

1) Particle Features (momentum, position, ...) are not discrete:

Tokenize Training Targets Discrete Density Estimation of Target
VQ-VAE . . K-Means Clustering -
arXiv:1711.00937 o™ E
AN S
v,L 7 Q
T e S
| g | G =

code

With discretized training targets, predict a categorical distribution over codes

This is a full (discretized) posterior over outputs, not an average (like regression)


https://arxiv.org/abs/1711.00937

Challenges

1) Particle Features (momentum, position, ...) are not discrete:

Tokenize Training Targets Discrete Density Estimation of Target

K-Means Ci rin
VQ-VAE eans Clustering 2
arXiv:1711.00937 = E
/N 3
w 7 O
H Lo HHH —/
) L Eamaan ‘J e Q
code
|Ordering |Inputs | Loss || Accuracy|
121 1 ? |no ordering continuous |VQ-VAE classification 54.1%
What abOUt to ken 1ZI ng InpUtS to the mOdeI : order head continuous|VQ-VAE classification|| 56.8%
order backbone |continuous |VQ-VAE classification 53.4%
. . order head quantized |VQ-VAE classification 51.1%
LO SS Of N p u t Freso I u t| on seem ed tO h u rt order head quantized |K-means classification 49.3%
order head continuous |K-means classification 56.2%
p e I’fO FMance order head continuous |regression 48.9%
order backbone |continuous |regression 46.3%



https://arxiv.org/abs/1711.00937

Challenges

2) Particles are not an ordered sequence, does order matter?

Without ordering, all masked elements have the
same predicted target distribution

Every masked token looks the same to the model

p(C1; €2y .- |X)

code



Challenges

116

2) Particles are not an ordered sequence, does order matter?

Ordering only prediction head maintains
backbone permutation symmetry

A

A

Masked Prediction Head

) (42

A

ha

t

(_

[ MPM Backbone }

Order Before
Prediction Head

(—[Pl P2 | | P3 P4]

A




How much to mask?

117

84.0
16
. 83.0 - 82,84 932 Zo> 8305 82,00 82.52

Classification ' 5 15 :
Accuracy [%] 82.01 ¢

81.0 -

80-0 1 1 1 ] 1 1

10 20 30 40 50 60 70 80 90

Quite a lot...

Consistent with MLM and MIM approaches (up to 70 or 80% masked)

masking rate (%)



2D tSNE Projections of Representations
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Fraction signal events

©
[N)

o
o



119

/ Step 1: Pre-training\
| I * Q
- r S Masked
— =~ o —| Particle
P § ‘ Modeling
Unlabeled

\datasets /
1

1
Parameter sharing |

v : .
Step 2: Fine-tuning
|
|

ey r / o Jet Property
R @) e
N == X Prediction
e O {

‘ (©
Labeled a8

datasets




Pre-training Gives Better Performance
and Can Use Less Data on Downstream Tasks 120

10-Class Jet Classification
with Linear Classifier

0.65-
0.60-
9
c 0.55
o
O
£ 0.50 . .
Fine-tune backbone along with
0.45 - —@— Fine-tuned backbone*™ | . .
: —e— Fixed backbone «—___ small task specific classifier
| —@&— Standard training
0.40 e \ Fix backbone after pre-training,
10° 10* 10° 10° train small task specific classifier

N labelled training samples

Standard supervised training on
data for the specific task




Dataset Transfer... Towards Domain Adaptation

1. Pre-train on “unlabeled” dataset A = treat like “real data”
2. Fine-tune on labeled new dataset B - treat like simulations

Test Dataset B

=
o
N

=
o
=

—@®— Fine-tuned backbone 1
—@— Fixed backbone ]
—@— Supervised

(False positive rate)?

102 103 104 105  10°
Labelled dataset size



Dataset Transfer... Towards Domain Adaptation

122

N

Pre-train on “unlabeled” dataset A = treat like “real data”
Fine-tune on labeled new dataset B - treat like simulations
Examine performance on “real” dataset A

Test Dataset B Test Dataset A
o 2
< 1077 1Model perf. similar on “real data”
© :
0 |Improve backbone? More data?
=
%]
o)
Q
Q 1 .
v 1071 —@— Fine-tuned backbone 1
C | —@— Fixed backbone -
~ —@— Supervised

102 103 10 105 10102 103  10* 10> 106
Labelled dataset size Labelled dataset size



s Tokenization Needed? 2409.12589

Tokenizing enables “binned” density estimation
* K-Means clustering (easier to train than VQ-VAE)

K-Means Clustering

VQ VAE
-
ddddddddd

arXiv:1711.00937 A ] ]

EEEEEE

1. Compute patch 2. Cluster into ADE knAn ADE lineAar 38 IN1k attenAtive
representations pseudo-categories 32
EEEE il :
Q . .
0 2 S R ® Sy {—' Related idea in
feacher E i & masked image modeling
0 ) 2502.08769
I IR 4 I 111 1 1 III 11111 lll 111 111 I 11111 III 1 11

1010 10! 1012 1010 10! 1012 1010 10 1012

. Inference #FLOP Inference #FLOP Inference #FLOP
3. Predict category

of missing patches ® CAPI ®MAE oD2V2 ®I-JEPA ® AIM ADINOv2


https://arxiv.org/abs/1711.00937
https://arxiv.org/abs/2409.12589
https://arxiv.org/abs/2502.08769

s Tokenization Needed? 2409.12589

124

Tokenizing enables “binned” density estimation
* K-Means clustering (easier to train than VQ-VAE)

Can do continuous density estimation using
generative models conditioned on unmasked data

Generative Model

HEE | @8
A A

CFM
loss
Time-Dependent
Transformer Trgr;s(;f:drmaer
Encoder . Also updated model
[ mix with noise to MAE architecture
A i
) —
A random split A

.

MO|

A

Mo4

0

@) @) @

@)

ds

Transformer

plala

2 [

pad 4

(=) (=]

(=]

[ Backbone

VRN

1)

drop 4

/) B B

%



https://arxiv.org/abs/2409.12589

s Tokenization Needed? 2409.12589
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Tokenizing enables “binned” density estimation
* K-Means clustering (easier to train than VQ-VAE)

Can do continuous density estimation using
generative models conditioned on unmasked data

Table 1: The effects of the model redesign on the accuracy of a classifier head trained using the
encoder outputs. All models except the final iteration were trained using 200k training steps, a mask
rate of 30%, and a 2-layer decoder.

k-means

MPMv1 using (pr,n, ¢) [1] 56.2

+ updated transformer layers 62.2 16.0
+ impact parameter features 70.2 18.0
+ constituent ID feature and ID reconstruction task 740 138
+ transformer as decoder (MAE) 814 174
+ registers 83.0 116
+ longer train (1M steps) + deeper decoder + 40% mask rate 84.0 1 1.0

Mo4

(=) (=]

(=]

A 0
4] (&) (@) (4] (&
Transformer
DEHEE
pad 4

Backbone

VRN

1)

drop 4

/) B B

1 &)



https://arxiv.org/abs/2409.12589

Many Different Masked Learning Strategies Work!

10-Class Jet Classification
with Transformer Head

X
> 60 —8— From Scratch
§ —0— Regression
§ 50 1 —8— K-Means
© 40 —0— VQVAE
—8— CNF
30 - —e— CFM
—0— SSFM
20 .

103 104 10° 10° 107 108
number of training samples



Successful Transfer & Improved Performance
on Many Downstream Tasks
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Weakly Supervised Classification

10
- 8-
c
()
IS
(3]
>
S 64
Q
£
g —8— From Scratch
§ 4 A —e— Regression
% —8— K-Means
% —8— VQVAE
21 —8— CNF
—8— CFM
—&— SSFM
0 T T T
103 104 10°

number of signal samples

Segmentation (vertex finding)

balanced accuracy (%)

0.45 A

0.40

—@— From Scratch —8— CNF

—®— Regression —8— CFM

—8— K-Means —0— SSFM

—o— VQVAE

1 2 3 4 5 6

secondary vertices per jet

Out-of Distribution Classification
on different data set (b-tagging)

accuracy (%)
o
N

—8— From Scratch
60 ~®— Regression
—8— K-Means
581 —e— VQVAE
56 - —8— CNF
—e— CFM
54 ~0— SSFM
104 10° 10°

number of training samples

Element-wise (track) classification

74.5
74.0
X735
>
@
5 73.0
o
o
©
B 725
o
c
o
® 720
—8— From Scratch —8— CNF
—@®— Regression —o— CFM
7151 —e— K-Means ~0— SSFM
—8— VQVAE
71.0 T T T T T
6 8 10 12 14

number of tracks per jet
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Next token prediction



Next token prediction, i.e. GPT style training

R ﬂ /\ N

N\ wil A simple example of autoregressive
is blg black cat <END> - i e
4 \ 4\ B \ 4 \ B ;
Vs ) seem | |
1
ehav

T ansforn'\\er Decoder

Auto-regressively predict next token in sequence --‘

p(xe|X1:6-1) -

_________

Train with log-likelihood: '
o B



Next Particle Prediction: Omnijet-a

130

Next token prediction can also work for particles, if we
(a) tokenize particles, (b) give them an order, in this case by py

( Jet tokenization R
131 token 1 l)‘,|
» B encoder —> decoder —®
Jetorgost = {B1,B2r- - Fn} P token n 7 Jetreco = {F}, 5
\_® i = (pr,0™, ¢™) T i = (pr. 0™, ¢™) )
& =

start-token —p

- -

Autoregressive next-token generatlon

{

backbone

\

1

I

I

Transformer Next-token !
prediction head ||

l

e

Jet generation

token 1

token 2 VQ-VAE P2
N decoder i

token n 1—5

z

Jetgen = {P1,P2, ... Pn}

\_ o i = (pr, ™, ¢™) )
4 e
Jet classification
131 token 1
» 1)2 —> SO = [ TL:'::&"::’ ]&Iassiﬁcation head | —p  Jet type prediction
Jotoagna = {Bisfae--sfa} P token 1
ke T = (prn™, 6™

ol

2403.05618


https://arxiv.org/abs/2403.05618

Tokenization Performance
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Token Visualization

164 . Jet properties from decoded particle tokens
512 Codebook size
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Omnijet-a Performance
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Generative Modeling

le-2 le-3
Reconstructed JetClass tokens 8 Reconstructed JetClass tokens 2.0 Reconstructed JetClass tokens
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o0 515
[ Q
N N
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top vs QCD classification
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Next vs. Masked Token Prediction
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Comparison within the same dataset (JetClass)

Pre-training: jet generation (all 10 jet types)

Fine-tuning: jet classification (all 10 jet types)

1.0 4 «eee

o
(00]
]

o
(@)]
]

Accuracy

o
N
]

== Fine-tuning MPM-Causal (continuous all features)
Fine-tuning NTP (continuous all features)
== From scratch (continuous all features)

.
“““““

.
.
s »*
‘‘‘‘‘‘‘‘‘‘
.

.
—p %
.

.*

0.2

103 10% 10°

Number of training jets

10°

Comparison when switching dataset

Pre-training: JetClass generation (all 10 jet types)
Fine-tuning: top tagging dataset [2] classification

Accuracy

o

O

w
1

o

(]

N
]

0.91 A

== Fine-tuning MPM-Causal (continuous kin-only)

0.94 { = Fine-tuning NTP (continuous kin-only)

=== From scratch (continuous kin-only)

104 10°
Number of training jets

MPM-Causal = modified version of Masked Particle Modeling (MPM) [1, 2]
MPM-Causal leads to more expressive backbone compared to next token prediction

J. Birk

10°


https://indico.cern.ch/event/1526677/contributions/6530993/
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Does pre-training + fine-tuning help practically?

|s it only for SSL?



Does Pre-training help in Measurements?

A\

A Explore impact of pre-training and then fine-
Object Data tuning a jet classifier as part of HH—4b analysis
(jets) )
4 A Pre-train “object backbone” = jet classifier

Object Backbone

Want to train event classifier on objects
\ %

Vs

Analysis Network ] Options:

1. Fix object backbone, train analysis classifier
S/B (standard approach)

2. Fine-tune object backbone while also
training analysis classifier

3. Retrain everything from scratch

-




Does Pre-training help in Measurements?

A 90% signal efficiency 240113536
AT 1034 :
Obje.Ct Data - | End-to-End T "
(jets) ) [ Fine-tuning/” :f 7
4 A & 102 - :
S { ]!
: = s Y
Object Backbone = No Pre-training | |1/
%p]
O
o Standard 1
L
f\ / 9 i analysis
Analysis Network } g
o
S/B o T — 100102
R e D3t
M m 7 B ——— v T ICIency
Up to: 0103 104 107 10° 10’
: .
2-4X better Signal / Background L

10X more data efficient Double Higgs HH =4b vs Background Events


https://arxiv.org/abs/2401.13536

So where are we with Foundation Models in HEP?

My take: We've seen an exploration of several self-supervised
methods and the development of proto-foundation models in HEP

* Models mainly applied to particle in jets - need to move to events

* Not always clear what are the downstream tasks (esp. for jet models)

* Have not solved the systematic uncertainties / domain shift problem

—Pre-training on data and fune-tuning on simulation with labels has not yet led
to a more robust model

* Models fairly small so far, not yet benefitting from scaling

* As a community, learned a great deal about SSL
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Multi-Modal Learning



SImCLR — Multi-Modal Contrastive Learning

Remember SImCLR;

Batch of Tw gm ntatio Extract
N images ach ima g features

Gl
i

[y
|8

I
|

Compare representations of
different augmentations of
inputs using contrastive loss

HEENT
RN

Bring same image together,
push different images apart

Can we generalize beyond a
single modality of data?

\A/\A/\A/




CLIP: Contrastive Language Image Pretraining

1. Contrastive pre-training 2. Create dataset classifier from label text

pepper the Text
uesieree || R 1 — - v ~
T, T2 T3 TN
— I I, IpT, IpTg I Ty
3. Use for zero-shot prediction
— I I IpT, IpTz - IyTy P
T T, T3 Tn
Image
Encodar > I IsTy IzT, I3 Is Ty
Image
e = I Ln LT, I I Ty
— Iy InT InT, INTg InTn ‘
a photo of
adog.
T
exp(q, k;/7)
Lz m = —log

exp(q;ki/7) + >, exp(a/k;/7)

2103.00020



https://arxiv.org/abs/2103.00020

AstroCLIP

Spectra and multi-band images as
two different views for the same
underlying object.

M;

Spectra DESI Legacy Surveys (g,r,z) images,

encoder
and DESI EDR galaxy spectra.
@
* .
Image - u uid ‘E .
e
encoder Candidate
/ spectrat v
Shared embedding
space

s .\ Nearest
" neighbor

S exp(alki/7)
" > exp(qlk;/7) + Zj;é.i exp(q; k;/7)

z =0.22
log M, =11.2

Cosine similarity search Zero-shot prediction
2310.03024


https://arxiv.org/abs/2310.03024
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AstroCLIP: Cross-Modal Similarity Search

0
x v . -
> S
= =
query query
retrieved retrieved
A A A A
- . . S
(f) S¢ (zl(;ll. Zim) (g) Sc (qu* z°P)
"0
x ! x
S =
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query query
retrieved retrieved
x ,‘lrll -1;(4 ‘l?'l' I~;(-| A00C “Ox 0 7l-‘)l “ MO Joac
A A A A
(i) Sc (2™, z*P)

(h) Sc (z) . 2"™)
Sc(z;",2z;") = (z;" - 27")/ || 2" ||| 25™ ||

2310.03024


https://arxiv.org/abs/2310.03024

AstroCLIP: Redshift Estimation from Images

AstroCLIP

DINO Image

Stein et al.

'R2 score: 0.79

-l - -
v & e
> P % .
:

" R2 score: 0.63

R? score: 0.45

0.2 0.4 0.6
Ztrue

2310.03024

0.0 0.2 0.4 0.6

Ztrue

ResNetl8 Photometry

0.6
0.5
0.44

0.3{"

. 0.1 o P
R? score: 0.76 * R? score: 0.68
QF= T v : 0.0+ v v .
0.0 0.2 0.4 0.6 0.0 0.2 0.4 0.6
true Ztrue

Supervised baseline

e Zero-shot prediction
= k-NN regression


https://arxiv.org/abs/2310.03024

4M: Massively Multi-Modal Masked Modeling
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Tokenization
RGB Depth
: a 3 1[2] 3
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CLIP features
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4M multimodal masked pre-training

_

Transformer
encoder
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RN

I Randomly sample
a fixed number of
input tokens

Randomly sample
a fixed number of
target tokens

rrrrrrrt
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&

Transformer
decoder

Prrtt Tttt

Mask tokens (for images) &
left-shifted tokens (for sequences)


https://arxiv.org/abs/2312.06647v1
https://arxiv.org/abs/2406.09406

4M: Massively Multi-Modal Masked Modeling

RGB Input Predictions

Surface Human
normals poses

Bounding Semantic
boxes segmentation

Canny SAM SAM Color

Caption edges edges instances palette

Depth CLIP DINOv2 ImageBind Metadata

2312.06647
2406.09406


https://arxiv.org/abs/2312.06647v1
https://arxiv.org/abs/2406.09406

Any-to-Any Modeling with 4M-style Generative Masked Modeling 146

| df IR
I B
Images Spectra —
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- L Evcoier |05
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Training is done by pairing observations of the same objects from different instruments.
Each input token is tagged with a modality embedding that specifies provenance metadata.

Model is trained by cross-modal generative masked modeling (i.e. 4M-style)
* Learns the joint and all conditional distributions of provided modalities: vm,n p(x,,|x;,)

F. Lanusse
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e Direct association between DESI and HSC was excluded during
pretraining
=> This task is out of distribution!

F. Lanusse


https://slides.com/eiffl/munich2025

What about Language Models, do they have a role to play? 149
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Figure 3: Flamingo architecture overview. Flamingo is a family of visual language models (VLMs)
that take as input visual data interleaved with text and produce free-form text as output.

Flamingo: a Visual Language Model for Few-
Shot Learning (2204.14198)

Language-Vision models have been a big success...
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Chameleon: Mixed-Modal Early-Fusion
Foundation Models (2405.09818)

Can language models interact with HEP data in some way?


https://arxiv.org/pdf/2405.09818
https://arxiv.org/abs/2204.14198

First steps of integrating science data with LLMs

Using LLM backbone with language Using LLM agents to do LHC
and numerical data for SKA physics data analysis
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Summary

Foundation models have emerged as a modern paradigm in Al, especially in
language and vision modeling

Built on large scale representation learning with self-supervision
* Learn the useful and transferrable features from the data
* Choose a good pre-text task that will enable broad feature learning

Can adapt / fine-tune foundation models many downstream tasks

Building expertise in HEP for foundation models, adapting them to our data
and exploring multi-modal capabilities

Will these efforts usher in a new way to do HEP science?



