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2What is a Foundation Model?

Image credit: 2108.07258

Prompt: Several giant wooly mammoths approach 
treading through a snowy meadow […] OpenAI Sora

https://arxiv.org/abs/2108.07258
https://openai.com/sora


3How we typically think about ML models
Train a specialized model to solve each task



4Foundation Models take a different approach
Pre-train one model that acts as the foundation for many different tasks

During pre-training foundation model must learn a good representation of the 
data that is useful / transferrable / tunable for many tasks.



5What is a Foundation Model?

Image credit: 2108.07258

Always see with FMs: 
•General /robust to many 

different tasks 

Often see with FMs:
• Large # params
• Large amount of data
• Self-supervised pre-training

https://arxiv.org/abs/2108.07258


6Same Model Solving Many Tasks

[gpt-oss model card]

2005.14165

https://openai.com/index/introducing-gpt-oss/
https://openai.com/index/introducing-gpt-oss/
https://openai.com/index/introducing-gpt-oss/
https://arxiv.org/abs/2005.14165


7In-Context Learning



8In-Context Learning



9The Power of Scale: Large Models, Data, Compute

Image credit: D. McCandless, T. Evans, P. Barton

2001.08361

1905.11946

https://informationisbeautiful.net/visualizations/the-rise-of-generative-ai-large-language-models-llms-like-chatgpt/
https://arxiv.org/abs/2001.08361
https://arxiv.org/abs/1905.11946


10The Power of Scale: Large Models, Data, Compute

Image credit: D. McCandless, T. Evans, P. Barton

Problem with large-scale training

      Need a lot of (labelled?) data

Is there a way to train neural 
networks without the need for 
huge manually labeled datasets?

       Self-supervised learning

https://informationisbeautiful.net/visualizations/the-rise-of-generative-ai-large-language-models-llms-like-chatgpt/
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What does this have to do with HEP?



12AI and Fundamental Physics Have Similar Aims

Reconstruct objectsPopulation selection 
& analysis

Statistical Inference

Generate plausible, high-dim. data from high-level concepts

Extract high-level concepts from low-level, high-dim. data



13AI and Fundamental Physics Have Similar Aims
Generate plausible, high-dim data 

from high-level concepts
Extract high-level concepts 

from low-level, high-dim. data

Prompt:
street style photo of a woman 
selling pho  at a Vietnamese street 
market,  sunset, shot on fujifilm 

Classification:
A photo of guacamole, a type of food



14Massive and High-Quality Scientific Data

Image credit: L. Heinrich



15Sort of already have a HEP Foundation Model?
Reconstruction at a collider turns energy depositions in particle properties

Reconstruction works, and can be tuned (a bit), for essentially all analyses! 

Image credit: L. Heinrich

Reconstruction



16How Big Should the ML Components be?
ML is already been infused into this reconstruction pipeline

How big / how much ML should we be using?

Human designed algorithms

Mixing some ML with
Human designed algorithms

Bigger ML blocks, connected by 
small pieces of human designed algos



17Does HEP Foundation Model mean one BIG neural Network?

I don’t believe this will work…

Or at least it won’t work with any “reasonable” model size, data size, compute

ϕ

Hits Higgs: Yes? No?



18Does HEP Foundation Model mean one BIG neural Network?

Some have tried… 
 success (if possible) likely requires a huge amount of data
  
Still enormous gap between using only hits 
    and using some physics knowledge

Transformers classifiers operating only on hits
2508.19190

https://arxiv.org/abs/2508.19190


19The Structure of Particle Physics
“Inverting the Generative Model”:
 Choosing our intermediate representations based on known physics

Tracking

Calorimeter 
Clustering

Particle Flow 
(ML)

Jet Clustering Jet Tagging
(ML)

Particle ID 
(ML)

Event Reco 
(ML)

Event Classification 
(ML)

Energy Deposits → Observable Particles Observable Particles → Hard Scatter States

There are raw data challenges in HEP, tracking, clustering, particle flow, 
neutrino physics, cosmology…

Deep learning on low level data is part of the story, but not the whole story



20

…

Researchers seek to leverage their human 
knowledge of the domain, but the only thing that 
matters in the long run is the leveraging of compute



21Foundation Model For Science?



22Foundation Model For Fundamental Physics
Klein, …, MK, 2401.13537

Different data analysis goals often share similar pattern recognition needs

Can we build tools that can generalize across tasks & even experiments? 

https://arxiv.org/abs/2401.13537


23Why Use this Strategy in Fundamental Physics?
Reusable – One backbone used for several tasks. 
           Fine tune for different data analyses, experiments, detector designs

Train on huge real data – Leverage experimental data

Uncertainty reduction – Reduce dependence on simulation-based training

Leverage multi-modal methods– Combine data from different detectors to 
    address more complex tasks



24The Challenge of Systematic Uncertainties

Model

Simulated 
Data

Supervised 
Learning Task

Model

Real Data

Prediction Prediction

Training Inference

Uncertainty from distribution shift between sim. & data



25Can Pre-training Strategies Help?

Model

Pre-Training 
Task

Model

Representation

Prediction

Simulated 
Data

Fine-Tuning 
Task

Model

Real Data

Prediction

Pre-Training Fine-tuning Inference

Representation Representation

Real DataLearn representations with 
reduced sensitivity to 
simulator variations?

Pre-training on real data?



26Towards Optimizable and More Automated Data Analysis

Foundation Model
Structured 
Pre-trained

Fine-tunable

Object-level (Reconstruction) Population-level

Event Selection

Signal 
Discrimination

Statistical 
analysis

⋮

Pre-trained, generalized tools à Fully optimizable analysis

End-to-End Fine-Tuning for each data analysis

More optimal, rapid, and broad searches & measurements



27What this approach can mean
Never have to retrain my own neural networks from scratch 
• Existing pre-trained models would already be near optimal, no matter the task

Practical large scale Deep Learning even in very few example regime

If the information is embedded in a space where it becomes linearly 
accessible, very simple analysis tools are enough for downstream analysis 

Could it even mean?
Single pre-trained model which can operate on any input data type 
• I no longer need to worry about what network to use on some data

Deep understanding of the data, informed by cross-modal information 
• A downstream task could be specified with just a few examples



28

Representation Learning



29



30

“AI must [...] learn to identify and disentangle the underlying
explanatory factors hidden in the observed milieu of low-level
sensory data”

“representation learning [means] learning representations of the
data that make it easier to extract useful information when
building classifiers or other predictors”

Y. Bengio, A. Courville, P. Vincent, 
Representation learning: A Review and New Perspectives, 2012

https://arxiv.org/abs/1206.5538


31Representations



32Representations



33What Makes a Good Representation?
Make subsequent problem solving easy

Compact
• Contains only the essential information, removing redundant details.

Predictive
• Being able to take actions that achieve desirable future outcomes.

Disentangled
• Each dimension represents a distinct attribute.

Interpretable
• It would be good if we human can understand it!

Transferability
• Ideally, one rep. to make all later problems (that human cares about) easy!

[For more discussion, See e.g. 
“Representation Learning”, Bengio, 
Courville, Vincent 2013]

https://arxiv.org/abs/1206.5538
https://arxiv.org/abs/1206.5538


34What is a Representation?
Representation 𝑧 is an abstraction of data 𝑥 mapped by an encoder function 𝑓

Image Credit: Foundations of Computer Vision

https://visionbook.mit.edu/


35Classic Object Detection

Feature Extractors

Edges

Textures

Colors

Segments

Parts

“Fish”

Classifier



36Deep Learning

Learned 
Feature Extractors

“Fish”

Classifier

Learned



37What is Representation Learning?
Typically find encoder through optimization of an objective or loss 𝐿[⋅]

Representation learning is about designing encoders and objectives

Image Credit: Foundations of Computer Vision

min
"
𝐿[𝑓(𝑥)]

https://visionbook.mit.edu/


38What Do Deep Nets Internally Learn?

Image patches that activate several CNN neurons most strongly

1311.2901

Layer 1

Layer 2

Layer 3

Layer 5

https://arxiv.org/abs/1311.2901


39Deep Learning 

“Fish”

Learned Intermediate Representations represent those in traditional pipeline

Learned



40Representations from Deep Neural Networks

Hard to interpret

Build multiple levels of representations

Reduce domain knowledge and feature engineering

Deep representations are transferrable



41Learned Representations are Transferrable
One of the most important discoveries of the deep learning revolution

Transfer learning:
• Pre-train on large-scale data
• Fine-tune on small-scale data

• Enabled deep learning for small datasets
• Revolutionized computer vision

• Taking a supervised pre-trained ResNet
and fine-tuning it for new tasks /dataset
totally changed how people could used models

DeCAF: A Deep Convolutional Activation Feature for Generic Visual Recognition, 1310.1531
Visualizing and Understanding Convolutional Networks, 1311.2901

CNN Features off-the-shelf: an Astounding Baseline for Recognition, 1403.6382Slide credit: Isola, Freeman, Li, Intro to Computer Vision

https://arxiv.org/abs/1310.1531
https://arxiv.org/abs/1311.2901
https://arxiv.org/abs/1403.6382
https://introtocv.github.io/index.html


42How do you learn a representation?

Broadly two approaches, Compression and Prediction

Torralba, Isola, Freeman, Foundations of Computer Vision

https://visionbook.mit.edu/


43How do you learn a representation?

Data Compression Label Prediction Data Prediction,
i.e. Self-Supervision



44Self-Supervised Learning

Common trick:

Convert “unsupervised” problem
into “supervised” empirical risk
minimization

Do so by cooking up “labels”
(prediction targets) from the raw
data itself — called pretext task



45How to evaluate the quality of a representation?
Dimensionality Reduction & Visualization

tSNE visualization 
of MNIST dataset



46How to evaluate the quality of a representation?
Dimensionality Reduction & Visualization

2304.07193

https://arxiv.org/abs/2304.07193


47How to evaluate the quality of a representation?

Check downstream task performance of features

Train small “linear probe” on top of representation

Fine-tune network for some downstream task



48

Transformers



49Transformers
Starting from the idea of using attention to 
enable recurrent neural networks to look 
across inputs while processing a sequence

Question: why do we need RNN at all?
Attention is all you need

https://arxiv.org/abs/1706.03762


50Scaled Dot-Product Attention

Project input Query onto Key to compute weights for corresponding Value

Return the weighted value

where

Query Key Value



51Scaled Dot-Product Attention

Self-Attention: 
Use input 𝑋 to define Q,K,V

𝑄 = 𝑋𝑊#   

𝐾 = 𝑋𝑊$   

𝑉 = 𝑋𝑊%

where



52Attention Visualization

1409.0473 BertViz

https://arxiv.org/abs/1409.0473
https://github.com/jessevig/bertviz


53Transformer Encoders vs Decoders

Transformer decoder uses causal masking
•When processing an input, can only look at 

previous inputs
•Can only “look into the past”

Transformer encoder doesn’t use masking
• “Bi-directional” context, i.e. can look at all the 

inputs at every step
•Can “look into the future”

Causal Masking



54Data Order
Self-attention is permutation invariant
•Great if your data is a set … Not so great for sequences

If we want / need order information must build it in ourselves, 
we need to encode the order of the sentence in our keys, queries, and values.

Represent each sequence index as a vector 

   𝑝" ∈ ℝ#, for i ∈ {1,2, … , 𝑛} are position vectors

• Easy to incorporate this info into our self-attention block: add 𝑝! to our inputs!

• Let 𝒙𝑖 is the embedding of the word at index i. The positioned embedding is:

   $𝑥! = 𝑥! + 𝑝!
Typically just do this at the first input layer



55Absolute Positional Encoding
Pros:
• Periodicity indicates that maybe 

“absolute position” isn’t as 
important
•Maybe can extrapolate to longer 

sequences as periods restart!

Cons:
•Not learnable
• Extrapolation doesn’t work well!



56Absolute Positional Encoding

Dot product between positional encoding vectors 𝑃𝐸$ ⋅ 𝑃𝐸%



57Learnable Positional Encoding
Learned absolute position representations: 

   Let all 𝑝" be learnable parameters!

Learn a matrix 𝑃 ∈ ℝ#×' and let each 𝑝" be a column of that matrix!

Pros:
• Flexibility: each position gets to be learned to fit the data

Cons:
•Definitely can’t extrapolate to indices outside 1, … , 𝑛.

Many systems use this!



58Relative Positional Encoding
Want attention to only depend on relative position (𝑖 − 𝑗)

Relative positional embedding should be function 𝑓(𝑥, 𝑖) such that

     𝑓 𝑥, 𝑖 ⋅ 𝑓 𝑦, 𝑗 = 𝑔(𝑥, 𝑦, 𝑖 − 𝑗)



59RoPE: Rotary Position Embedding

Instead of adding absolute position, multiple by “rotation” matrix

2104.09864

https://arxiv.org/abs/2104.09864


60What about other Modalities? Vision Transformer



61Vision Transformer – Patches as Tokens

Vision transformer processes an image like a sequence 

Tokens formed from taking patches of the image
  patch → flatten → linear transformation

These are not “discretized” tokens, linear projections can be anything



62Scaling Laws

Scaling up models leads to reliable gains in loss reduction

Scaling laws can help identify model size – data tradeoffs

Predictable scaling helps us make intelligent decisions 
about architectures etc.

2001.08361
2102.06701
+ many more

https://arxiv.org/abs/2001.08361
https://arxiv.org/abs/2102.06701


63

Self-Supervised Learning



64Self-Supervised Learning

[Virginia Da Sa, Learning Classificaion with Unlabeled Data, NeurIPS 1993]

[Schmidhuber, 1990]

https://proceedings.neurips.cc/paper/1993/file/e0ec453e28e061cc58ac43f91dc2f3f0-Paper.pdf
https://proceedings.neurips.cc/paper/1993/file/e0ec453e28e061cc58ac43f91dc2f3f0-Paper.pdf
https://people.idsia.ch/~juergen/FKI-126-90_(revised)bw_ocr.pdf


65Self-Supervision
Self-supervision: 
Train a model to answer procedurally generated questions about the data.

Good:
• Can procedurally generate potentially infinite amounts of annotation.
•We can borrow tricks from supervised learning without labels.
• Focus on only the information that you need (e.g., not pixels).
• Answering these questions requires more fundamental understanding of data.

Not so good:
• designing good questions also requires some fundamental understanding of the 

data (e.g., structure).



66Self-Supervised Learning and Fine-Tuning

Ba
ck

bo
ne

Ba
ck

bo
ne

Pretext
Objective

Task
specific

head

Downstream
Objective

Task
specific

head

Trained Backbone Model

Un-Labeled 
Data

Labeled 
Data

Pretext Task

Downstream Task



67Classes of Self-Supervision

x

Encoder
f(x)

z

Decoder
g(x)

y

x’

Loss
L(x,y)

“Generative” like approaches

Compare at “pixel” / ”token” level

x

Encoder
f(x)

𝑧!

y

𝑧!"

Loss 
𝐿(𝑧!" , 𝑧#" )

Encoder
h(y)

𝑧#

Predictor

“Predictive” like approaches

Compare at representation level

Predictor

𝑧#"



68Generative vs Predictive (& Contrastive) vs Supervised Approaches

Generative Approaches 
• Aim to generate missing or corrupted data in original input / token space
• Criticism: may require learning very fine and often irrelevant details or noise

Predictive Approaches
•Make and compare predictions in (learned) representation space
• Criticism: Only can learn encoder, can’t generate data
• Criticism: Often requires choosing good augmentations

           and/or lots of negative examples

Supervised Approaches
• Learning representation required to solve a labelled supervised learning task
• Criticism: Requires lots of labelled data, hard to scale
• Criticism: If supervised objective not general enough, learn representations that 

are not generally useful and are hard to adapt / fine-tung to new tasks



69Towards SSL & Foundation Models in HEP – Sep. 2025
Contrastive
• JetCLR - symmetry augmentations 
• R3SL - re-simulation 
• RINO – clustering augmentations 

       with DINO distillation

Joint Embedding Predictive 
Architectures  (JEPA)
• J-JEPA – cluster particles into subjets
• P-JEPA – use random masks
•HEP-JEPA – blocks of particles

Generative
•Mask particle type prediction 
•Mask Particle Modeling [1, 2] 
•Next Particle Token Prediction 

Supervised
• Supervised classification and 

generation
• Large-scale fine-grained 

classification

https://arxiv.org/abs/2108.04253
https://arxiv.org/abs/2108.04253
https://arxiv.org/abs/2403.07066
https://arxiv.org/abs/2403.07066
https://arxiv.org/abs/2509.07486
https://arxiv.org/abs/2509.07486
https://arxiv.org/abs/2412.05333v1
https://arxiv.org/abs/2412.05333v1
https://arxiv.org/abs/2412.05333v1
https://arxiv.org/abs/2412.05333v1
https://indico.cern.ch/event/1386125/contributions/6139666/
https://indico.cern.ch/event/1386125/contributions/6139666/
https://indico.cern.ch/event/1386125/contributions/6139666/
https://indico.cern.ch/event/1386125/contributions/6139666/
https://arxiv.org/abs/2502.03933
https://arxiv.org/abs/2502.03933
https://arxiv.org/abs/2502.03933
https://arxiv.org/abs/2502.03933
https://arxiv.org/abs/2312.06909
https://arxiv.org/abs/2312.06909
https://arxiv.org/abs/2401.13537
https://arxiv.org/abs/2409.12589
https://arxiv.org/abs/2403.05618
https://arxiv.org/abs/2403.05618
https://arxiv.org/abs/2404.16091
https://arxiv.org/abs/2404.16091
https://arxiv.org/abs/2404.16091
https://arxiv.org/abs/2405.12972
https://arxiv.org/abs/2405.12972
https://arxiv.org/abs/2405.12972
https://arxiv.org/abs/2405.12972
https://arxiv.org/abs/2405.12972
https://arxiv.org/abs/2405.12972
https://arxiv.org/abs/2405.12972


70A note about data: Jets

Jet = Unordered set of particles

Each particles has a list of features:

Particle = {momentum, direction, position, … }

Image Credit: 1909.12285

https://arxiv.org/pdf/1909.12285.pdf


71

Contrastive Learning



72Contrastive Representation Learning



73Contrastive Representation Learning

Strategy: Given input & set of examples, 
determine which examples are different and which are similar (an augmentation)



74A formulation of contrastive learning
Encoder model 𝑓(⋅) embeds and give representation of data, we want:

𝑆𝑐𝑜𝑟𝑒 𝑓 𝑥 , 𝑓 𝑥- ≫ 𝑆𝑐𝑜𝑟𝑒 𝑓 𝑥 , 𝑓 𝑥.

      𝑥 =reference sample,      𝑥- = positive sample,   𝑥. = negative sample

Want to learn an encoder function 𝑓(⋅) that gives

 High score for positive pairs (𝑥, 𝑥-)

 Low score for negative pairs (𝑥, 𝑥.)



75A formulation of contrastive learning
A loss function with 1 positive sample and N-1 negative samples

𝐿 = −𝔼/ log
exp 𝑠 𝑓 𝑥 , 𝑓 𝑥-

exp 𝑠 𝑓 𝑥 , 𝑓 𝑥- + ∑0123.2 exp 𝑠 𝑓 𝑥 , 𝑓 𝑥0.
	

Score for positive pair Score for N-1 negative pairs



76A formulation of contrastive learning
A loss function with 1 positive sample and N-1 negative samples

𝐿 = −𝔼/ log
exp 𝑠 𝑓 𝑥 , 𝑓 𝑥-

exp 𝑠 𝑓 𝑥 , 𝑓 𝑥- + ∑0123.2 exp 𝑠 𝑓 𝑥 , 𝑓 𝑥0.
	

Cross-entropy loss for N-way softmax classifier: 
 Learn to find positive sample from N samples

Also known as InfoNCE loss [1807.03748]

 lower bound on mutual information:    I 𝑓 𝑥 , 𝑓 𝑥- − 𝐿𝑜𝑔𝑁 ≥ −𝐿
[1905.06922]

https://arxiv.org/abs/1807.03748
https://arxiv.org/abs/1905.06922


77What’s going on here? Invariance perspective

Want embedding of two views (𝑥, 𝑥!) to be as similar are possible

So embeddings need to be insensitive to effect of the augmentations
• i.e. identify that it is the same underlying object

Pushes model to learn embedding that are invariant to augmentations

Choosing good augmentation becomes critical!
•Want to be invariant to irrelevant details
•Want to be sensitive to important semantic information



78SimCLR: A simple framework for contrastive learning
Score function is cosine similarity

𝑠 𝑢, 𝑣 =
𝑢4𝑣
𝑢 𝑣

Encoder 𝑓(⋅) computes representation ℎ

Projection network 𝑔 ⋅
• Project feature to space where contrastive 

learning is applied
• Separates making representation from loss

Generate positive samples with 
augmentation: crop, blur, color distort, …

[2002.05709]

https://arxiv.org/abs/2002.05709


79SimCLR Augmentations

SimCLR uses many different augmentations 
(more than methods prev. models)

Started trend of using augmentation to drive 
SSL



80SimCLR: A simple framework for contrastive learning

Linear evaluation on image 
classification

SimCLR works best with 
large batch size and long 
training times

[2002.05709]

https://arxiv.org/abs/2002.05709


81JetCLR
SimCLR was among the first SSL methods 
applied to HEP data, specifically for jets

Physics inspired augmentations
• Translations
• Rotations
• Soft-splitting 
• Collinear splitting

Tested with linear classifier head on top of 
frozen backbone

Is there a general way to generate 
physics-driven augmentations?

2108.04253

https://arxiv.org/abs/2108.04253


82Re-Simulation Based Self-Supervised Learning

HEP high-fidelity multi-step stochastic simulator

Theory Interaction Evolution Detector

Simulators hold domain knowledge 
  → generate plausible outcomes of  experiment

2403.07066

https://arxiv.org/abs/2403.07066


83Re-Simulation Based Self-Supervised Learning

HEP high-fidelity multi-step stochastic simulator

Theory Interaction Evolution Detector

2403.07066

https://arxiv.org/abs/2403.07066


84Re-Simulation Based Self-Supervised Learning

HEP high-fidelity multi-step stochastic simulator

Theory Interaction Evolution Detector

Fix

Fix

2403.07066

https://arxiv.org/abs/2403.07066


85Re-Simulation Based Self-Supervised Learning

HEP high-fidelity multi-step stochastic simulator

Theory Interaction Evolution Detector

Re-simulateFix

Fix Same Sim.
In-Domain

2403.07066

https://arxiv.org/abs/2403.07066


86Re-Simulation Based Self-Supervised Learning

HEP high-fidelity multi-step stochastic simulator

Theory Interaction Evolution Detector

Change Sim, 
re-simulate

Fix
In-Domain

Out of Domain

Same Sim.

Change Sim.

Fix

2403.07066

https://arxiv.org/abs/2403.07066


87Re-Simulation Based Contrastive Learning

  

 

Contrastive Loss

 

 

Sample one Sample one

Nominal 
scenario

Nominal 
scenarioRe-simulation Re-simulation

positive pair

negative pair

Graph Building
& 

Graph
Convolutions

Graph Building
& 

Graph
Convolutions

Graph Representations Graph Representations

Re-simulation Re-simulation

2403.07066

https://arxiv.org/abs/2403.07066


88tSNE Visualization of Pre-Trained Representations

Class separation & alignment of representations across domains
2403.07066

https://arxiv.org/abs/2403.07066


89Fine-Tuned Performance

Better

New work building on 
this idea in: 2503.116322403.07066

https://arxiv.org/abs/2503.11632
https://arxiv.org/abs/2403.07066


90Sensitivity to Simulator Variations

Some reduction of sensitivity to simulator variations for some  learned features

Far from robust… still a lot of work needed on systematic uncertainty robustness



91Momentum Contrastive Learning (MoCo)
Difference to SimCLR
• Running queue of keys (negative samples) 

•Only update encoder through query

•Decouple mini-batch size with num. keys 
→ Can support large number of samples

• Key encoder is slowly progressing:
momentum update rule

𝜃" ← 𝑚𝜃" + 1 −𝑚 𝜃#

…enter EMA (exponential moving average)

1911.05722

https://arxiv.org/abs/1911.05722


92What’s the deal with the EMA?
Why would comparing a model with EMA of itself drive learning?

Contrastive loss like mapping encoded query 𝑞 onto dictionary of encoded 
keys 𝑘", and want to learn to find positive key 𝑘-

Claim: if the key encoder is changing too rapidly, ensuring similarity 
between encoded query and key becomes challenged

  → Want a slowly evolving key encoder

I still struggle to understand why this works… But it seems to
1911.05722

https://arxiv.org/abs/1911.05722


93Knowledge Distillation
Knowledge Distillation is a process 
of transferring knowledge from a 
NN teacher to a NN student of 
equal or smaller size.

Teacher softmax out considered a 
soft classifier target for the student 
model with Cross-Entropy loss:

𝐿 = −P
"

Q𝑦 𝑥" 𝑡 log 𝑦(𝑥"|𝑡)

Where 𝑡 is temperature parameter



94Dino: Self-Distillation with No Labels
Train encoder (student) by comparing 
predictions to EMA of encoder (teacher)
•Different augmentation in student and 

teacher
•Global and patch views

Compare softmax predictions
•No contrastive loss
• Compare augmentations against each 

other like SimCLR

Notably, no negative samples needed!



95Dino: Self-Distillation with No Labels
This works strikingly well!
Unsupervised object segmentation



96RINO: Renormalization group Invariance with NO labels
SSL training with DINO framework, but using 𝑘5-clustering history as the 
augmentation method for jets

𝑘5-clustering steps interpreted as probing jet at different resolution scales
•Augmentations from n-prong subjets from 𝑘5-clustering

By training model to be approximately invariant under examination at 
different steps of  𝑘5-clustering → model learns invariance to resolution scale

2509.07486

https://arxiv.org/abs/2509.07486


97

Masked Modeling



98Masked Language Modeling
Strategy: Mask some elements of input sequence, then predict missing tokens

Image credit: 2104.01642

[MASK]

https://arxiv.org/abs/2104.01642


99Masked Language Modeling (MLM)
What is the model learning? 

  Let 𝑥 = 𝑖𝑛𝑝𝑢𝑡, and 𝑥6 = 𝑖𝑛𝑝𝑢𝑡𝑠	𝑤𝑖𝑡ℎ	𝑠𝑜𝑚𝑒	𝑖𝑡𝑒𝑚𝑠	𝑚𝑎𝑠𝑘𝑒𝑑

𝑝 𝑥	 𝑥6)

Training target: masked token probability given unmasked tokens

When applied, all tokens unmasked 
Why is the representation useful for unmasked tokens at inference time?
  
Encourages learning a contextualized meaning, not a meaning in isolation. 
Once learned, contextualized meaning useful for all tokens.



100Masked Image Modeling

2106.08254
2208.06366

https://arxiv.org/abs/2106.08254
https://arxiv.org/pdf/2208.06366


101Masked AutoEncoder (MAE)
MAE only encodes unmasked elements. Decoder also see masked tokens 

Significantly more scalable that MIM, since only encode small fraction of inputs

2111.06377

https://arxiv.org/abs/2111.06377
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Aside: Tokenizing Continuous Data



103Discretizing Tokens with Vector Quantized (VQ)-VAE 

VAE but (a) only discrete set of latent vectors allowed, (b) deterministic

𝑧$(𝑥) 𝑧%(𝑥)
𝑞(𝑧|𝑥)

𝑝(𝑥|𝑧%(𝑥))

𝐹(𝑥) 𝐺(𝑧)



104VQ-VAE
Latent vector 𝑧= determined by 
closest codebook vector 𝑒0 to 
encoder-vector 𝑧>

Loss is a combination of usual MSE 
reconstruction loss, updates to 
codebook, and updates to encoder

Discretization is non-differentiable
• Straight-through estimator on 

reconstruction to get encoder grads
• Additional losses to learn codebook

“stop-gradient”



105Training with a Straight-Through Estimator
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106Training with a Straight-Through Estimator

Ignore gradient of discretization step
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1



107Codebook Collapse

During training, when examining the frequency of selecting codebooks elements

Often observe “codebook collapse”: only few of the codes are selected and used

Require careful initialization of codebook vectors, and re-initializing un-used 
codebook vectors during training time

•Not going through all the tricks now… see 2305.08842 ... Bear in mind when training!

Frequency
used for
encoding

Index

1 2 3 4 5 K…

https://arxiv.org/abs/2305.08842


108VQ-VAE Seems Painful… Why do we want it?

A. For vision-language models… language space is tokenized. If we 
want to “talk” to images, we probably need to tokenize them

B. Even outside language, transformers operate very well 
sequences of discretized tokens… is it absolutely needed? Is it a 
secret inductive bias? Not totally clear

C. Practical: Easier to predict discrete tokens / categorical 
posteriors 



109

End Aside



110Masked Particle Modeling
Mask individual particles and predict their properties
• 40M parameter backbone model with 100M jets for pre-training

Weird thing we might want:
Permutation invariant backbone

Why?
Particles are an unordered set



111Masked Particle Modeling
Mask individual particles and predict their properties
• 40M parameter backbone model with 100M jets for pre-training

Target Tokenizer

Additional model
to define labels

Discretize 
Learning 
Targets

Order Data



112Challenges

𝑝(𝑧|𝑥)

𝑧

𝔼&((|!)[𝑧]

In multi-modal distributions regression 
may not provide a useful prediction

1) Particle Features (momentum, position, …) are not discrete: 

  Regress continuous values?



113Challenges
1) Particle Features (momentum, position, …) are not discrete: 

VQ-VAE
arXiv:1711.00937

K-Means Clustering

Tokenize Training Targets

𝑐𝑜𝑑𝑒

𝑝(
𝑐𝑜
𝑑𝑒
|𝑥
)

Discrete Density Estimation of Target

With discretized training targets, predict a categorical distribution over codes

This is a full (discretized) posterior over outputs, not an average (like regression) 

https://arxiv.org/abs/1711.00937


114Challenges
1) Particle Features (momentum, position, …) are not discrete: 

VQ-VAE
arXiv:1711.00937

K-Means Clustering

Tokenize Training Targets

𝑐𝑜𝑑𝑒

𝑝(
𝑐𝑜
𝑑𝑒
|𝑥
)

Discrete Density Estimation of Target

What about tokenizing inputs to the model?

Loss of input resolution seemed to hurt 
performance 

https://arxiv.org/abs/1711.00937


115Challenges

2) Particles are not an ordered sequence, does order matter?
Without ordering, all masked elements have the 
same predicted target distribution

Every masked token looks the same to the model

𝑐𝑜𝑑𝑒

𝑝(𝑐+, 𝑐,, … |𝑥)



116Challenges

2) Particles are not an ordered sequence, does order matter?

Ordering only prediction head maintains
backbone permutation symmetry

Order Before 
Prediction Head



117How much to mask?

Quite a lot… 

Consistent with MLM and MIM approaches (up to 70 or 80% masked)

Classification 
Accuracy [%]



1182D tSNE Projections of Representations
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Pre-training Gives Better Performance 
and Can Use Less Data on Downstream Tasks

10-Class Jet Classification
with Linear Classifier

Better

Fine-tuned backbone
Fixed backbone
Standard training

Standard supervised training on 
data for the specific task 

Fine-tune backbone along with 
small task specific classifier 

Fix backbone after pre-training, 
train small task specific classifier



121Dataset Transfer... Towards Domain Adaptation
1. Pre-train on “unlabeled” dataset A à treat like “real data”
2. Fine-tune on labeled new dataset B à treat like simulations

Test Dataset B Test Dataset A

Fine-tuned backbone
Fixed backbone
Supervised

Fine-tuned backbone
Fixed backbone
Supervised(F

al
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os
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ve

 ra
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)-1



122Dataset Transfer... Towards Domain Adaptation
1. Pre-train on “unlabeled” dataset A à treat like “real data”
2. Fine-tune on labeled new dataset B à treat like simulations
3. Examine performance on “real” dataset A 

Test Dataset B Test Dataset A

Fine-tuned backbone
Fixed backbone
Supervised(F

al
se

 p
os

iti
ve

 ra
te

)-1 Model perf. similar on “real data” 

Improve backbone? More data?



123Is Tokenization Needed?
Tokenizing enables “binned” density estimation
•K-Means clustering (easier to train than VQ-VAE) 

VQ-VAE
arXiv:1711.00937

K-Means Clustering

2409.12589

Related idea in 
masked image modeling
2502.08769

https://arxiv.org/abs/1711.00937
https://arxiv.org/abs/2409.12589
https://arxiv.org/abs/2502.08769


124Is Tokenization Needed?
Tokenizing enables “binned” density estimation
•K-Means clustering (easier to train than VQ-VAE) 

Can do continuous density estimation using 
generative models conditioned on unmasked data

Flow

Flow

2409.12589

Generative Model

Also updated model 
to MAE architecture

https://arxiv.org/abs/2409.12589


125Is Tokenization Needed?
Tokenizing enables “binned” density estimation
•K-Means clustering (easier to train than VQ-VAE) 

Can do continuous density estimation using 
generative models conditioned on unmasked data

Flow

Flow

2409.12589

https://arxiv.org/abs/2409.12589


126Many Different Masked Learning Strategies Work! 
10-Class Jet Classification 
with Transformer Head
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Successful Transfer & Improved Performance 
on Many Downstream Tasks

Weakly Supervised Classification Out-of Distribution Classification
on different data set (b-tagging)

Element-wise (track) classificationSegmentation (vertex finding)
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Next token prediction



129Next token prediction, i.e. GPT style training

Auto-regressively predict next token in sequence
𝑝(𝑥5|𝑥2:5.2)

Train with log-likelihood:      

L =P
"

P
5

log 𝑝(𝑥5
(")|𝑥2:5.2

(") ) 

Transformer Decoder

is a big black cat <END>

This is a big black cat



130Next Particle Prediction: Omnijet-𝛼
Next token prediction can also work for particles, if we 
(a) tokenize particles, (b) give them an order, in this case by 𝑝4

2403.05618

https://arxiv.org/abs/2403.05618


131Tokenization Performance

Codebook size

Codebook size

Token Visualization
Jet properties from decoded particle tokens



132Omnijet-𝛼 Performance

Fine-tuning for 
top vs QCD classification

Generative Modeling



133Next vs. Masked Token Prediction

Slide credit: J. Birk

https://indico.cern.ch/event/1526677/contributions/6530993/
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Does pre-training + fine-tuning help practically?

Is it only for SSL? 



135Does Pre-training help in Measurements?
Explore impact of pre-training and then fine-
tuning a jet classifier as part of HH→4b analysis

Pre-train “object  backbone” = jet classifier

Want to train event classifier on objects

Options:
1. Fix object backbone, train analysis classifier 

(standard approach)
2. Fine-tune object backbone while also 

training analysis classifier
3. Retrain everything from scratch

Analysis Network

Jet dataJet dataJet data

Object Backbone

Object Data 
(jets)

S/B



136Does Pre-training help in Measurements?

Up to:
2-4X better Signal / Background
10X more data efficient 

2401.13536

Analysis Network

S/B

Jet dataJet dataJet data

Object Backbone

Object Data 
(jets)

Standard 
analysis

No Pre-training

End-to-End
Fine-tuning

Double Higgs HHà4b vs Background Events
(F

al
se

 P
os

iti
ve

 R
at

e)
-1

https://arxiv.org/abs/2401.13536


137So where are we with Foundation Models in HEP?
My take: We’ve seen an exploration of several self-supervised 
methods and the development of proto-foundation models in HEP

•Models mainly applied to particle in jets → need to move to events

•Not always clear what are the downstream tasks (esp. for jet models)

•Have not solved the systematic uncertainties / domain shift problem
–Pre-training on data and fune-tuning on simulation with labels has not yet led 

to a more robust model

•Models fairly small so far, not yet benefitting from scaling

•As a community, learned a great deal about SSL
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Multi-Modal Learning



139SimCLR → Multi-Modal Contrastive Learning
Remember SimCLR:

Compare representations of 
different augmentations of 
inputs using contrastive loss

Bring same image together, 
push different images apart

Can we generalize beyond a 
single modality of data?



140CLIP: Contrastive Language Image Pretraining

2103.00020

https://arxiv.org/abs/2103.00020


141AstroCLIP
Spectra and multi-band images as 
two different views for the same 
underlying object.

DESI Legacy Surveys (g,r,z) images, 
and DESI EDR galaxy spectra.

2310.03024

https://arxiv.org/abs/2310.03024


142AstroCLIP: Cross-Modal Similarity Search

2310.03024

https://arxiv.org/abs/2310.03024


143AstroCLIP: Redshift Estimation from Images

2310.03024

https://arxiv.org/abs/2310.03024


1444M: Massively Multi-Modal Masked Modeling

2312.06647
2406.09406

https://arxiv.org/abs/2312.06647v1
https://arxiv.org/abs/2406.09406


1454M: Massively Multi-Modal Masked Modeling

2312.06647
2406.09406

https://arxiv.org/abs/2312.06647v1
https://arxiv.org/abs/2406.09406


146Any-to-Any Modeling with 4M-style Generative Masked Modeling

Training is done by pairing observations of the same objects from different instruments. 
Each input token is tagged with a modality embedding that specifies provenance metadata.

Model is trained by cross-modal generative masked modeling (i.e. 4M-style)
• Learns the joint and all conditional distributions of provided modalities: 	 ∀𝑚, 𝑛	 𝑝(𝑥-|𝑥.)

Slide credit: F. Lanusse

https://slides.com/eiffl/munich2025


147Capabilities

Slide credit: F. Lanusse

https://slides.com/eiffl/munich2025


148Capabilities

Slide credit: F. Lanusse

https://slides.com/eiffl/munich2025


149What about Language Models, do they have a role to play?

Language-Vision models have been a big success…
Can language models interact with HEP data in some way?

Chameleon: Mixed-Modal Early-Fusion 
Foundation Models (2405.09818)

Flamingo: a Visual Language Model for Few-
Shot Learning (2204.14198)

https://arxiv.org/pdf/2405.09818
https://arxiv.org/abs/2204.14198


150First steps of integrating science data with LLMs
Using LLM backbone with language 
and numerical data for SKA physics

2506.14757 2509.08535

Using LLM agents to do LHC 
data analysis

https://arxiv.org/abs/2506.14757
https://arxiv.org/abs/2509.08535


151Summary
Foundation models have emerged as a modern paradigm in AI, especially in 
language and vision modeling

Built on large scale representation learning with self-supervision
• Learn the useful and transferrable features from the data
• Choose a good pre-text task that will enable broad feature learning

Can adapt / fine-tune foundation models many downstream tasks

Building expertise in HEP for foundation models, adapting them to our data 
and exploring multi-modal capabilities

Will these efforts usher in a new way to do HEP science?


