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‘% ML4HEP applications

Modern machine learning techniques, including deep learning, is rapidly being applied, adapted, and developed for high energy physics. Specialized reviews
The goal of this document is to provide a nearly comprehensive list of citations for those developing and applying these approaches to
experimental, phenomenological, or theoretical analyses. As a living document, it will be updated as often as possible to incorporate the
latest developments. A list of proper (unchanging) reviews can be found within. Papers are grouped into a small set of topics to be as
useful as possible. Suggestions are most welcome.

A Living Review of Machine Learning for Particle Physics fable of contents
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https://iml-wg.github.io/HEPML-LivingReview/

Plan of attack

1. Basics of DGMs and Normalizing Flows

2. GANs, VAE and SurVAE

3. Diffusion Models
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Neural Importance Sampling



Monte Carlo integration

Calculate (differential) cross sections
do =

 flux

Flat sampling: Importance sampling: Multi-channel:
inefficient find p close to f one map for each channel

I'= <f (x)>x~unif = <




Event generation in MadGraph 9)

Calculate (differential) cross sections

do = ——
flu

Sum over channels Integrand

MadGraph: build channels MadGraph: do/dx
from Feynman diagrams

Channel mappings
MadGraph: a"“(x) ~ | M;|? MadGraph: use amplitude structure, ...

Analytic mappings + refine with VEGAS
(factorized, histogram based
importance sampling)



Event generation in MadNIS 9)

Calculate (differential) cross sections

“MadNIS

do =

 flux

Sum over channels Integrand

MadGraph: build channels MadGraph: do/dx
from Feynman diagrams

\ Learned channel mappings

MadGraph: use amplitude structure, ...
Analytic mappings + refire-with-\-EeASs-

L refine with NF

MadGraph: a"“(x) ~ | M;|?



Event generation in MadNIS

Calculate (differential) cross sections

oL . “MadNIS

flu

Sum over channels Integrand

MadGraph: build channels MadGraph: do/dx
from Feynman diagrams
i . ~p{(x)
Learned \ Learned channel mappings
MadGraph: aiMG(x) ~ ‘Mi‘z MadGraph: use amplitude structure, ...

Analytic mappings + refire-with-\-EeASs-

a(x) = af(x) = aMO(x) - Ki(w) I
parametrize with NN AT refine with NF




Unweighting performance

Unweighting efficiency

0.1% truncation, after cuts ®

vs MadGraphb, SIMD ME

gg—ttg gg—ttgg gg—ttgge



-

speed-up

Unweighting performance

Unweighting efficiency

0.1% truncation, after cuts

DO
-
|

p—t
-
I

vs MadGraphb, SIMD ME

gg—ttg gg—ttgg

gg—ttgge

training time |min|

-

Training time

)
-

o
-

on 8-core M3 CPU

gg—ttg gg—ttgg

gg—ttggg




Unweighting performance

Unweighting efficiency Training time
75 =
- o E on 8-core M3 CPU o
N =60 -
Ejoj) O =
=z 25- 20 30 -
- E
0.1% truncation, after cuts o I . o
0 - += 0 — — -
o gg—ttg gg—1ttgg ge—1ttgeg
290 - :
? O . .
3 — Does it still pay off?
2.10-
vs MadGraphb, SIMD ME
0

gg—ttg gg—ttgg gg—ttgge



generation time |min|
= — — o
O - Ot -

=
-

Training time and amortization

1 gg — ttgg

100k unweighted events
8-core M3 CPU

————— MG5
o  MadNIS
o
[
®
@ ® o .
1 10

training time |min]

p—t
-

training time |min]

ek
1 1 1 I

10° 107 10°
# generated events

MadNIS is faster starting at 10k events!

DO
O

U= =
- Ot -
speed-up including training

-
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GAN Loss

5 D |
.'
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44| true DS cenerated DS 44| improved standard 1
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I
I
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2 - 2
1 1 -
0 - ' ' ' ' 0 4= ' ' '
0=gen 0.2 0.4 0.6 0.8 1 =true 0=gen 0.2 0.4 0.6 0.8 1= true
D(x)



GAN Unfolding

X10_2 Xlo—l
25 :I% ............. Tfllth 30 ............. Truth
T 20- 1 L —— Delphes - —— Delphes
% % 2.0
% — 1.0
“ S| g
o1 1.0- Mt
0.0- "
1.2
“E 107
0 20 50 75 100 125 150 175 200 70.0 72.5 75.0 77.5 80.0 82.5 85.0 &7.5 90.0

pr.j, |GeV] mj; |GeV]



GAN Unfolding

x 1072

0 25 50 75 100 125 150 175 200

Cut I:
30GeV < Pr;, < 100 GeV

Cut II:
30GeV < pp; <50GeV

30GeV < pp; <60GeV



FCGAN Unfolding

x 1072 x 1072
J_L ......... Truth
4.0 10 —— FCGAN
......... Eq(7)
30 30 _ ......... Eq(S)
%g gg JLL
—le D ()- =l 9 ()- -
1.0 - 1.0 J T
0.0- J 0.0- b
0 25 50 75 100 125 150 175 200 0 25 50 75 100 125 150 175 200

PT,j5, [Ge\/] Pr 5, [Ge\/]



cINN Unfolding

1.0 - ] i single detector event
' 1 4- 1 3200 unfoldings
' FCGAN i
10
0.8 - 1.2 1 i§
7 g =
5 £1.0- =
= 0.6- = E
E = 08 ET
= # FCGAN = i
.« — _ N _ l
= S 0.4 :
0.2 - i
0.2
0.0 - 0.0 - —— e
00 02 04 06 08 1.0 10 15 20 25 30 35 40 45 50

quantile pr, prg |GeV
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DDPM Training

t~ULT)

xo ~ (o) — @y = \/1 — Bixo + \/Bre —> DDPM

A
e ~ N(0,1) €p
52
- 2<172 (1—ﬁtt)/;|€ — €9 <

[2305.10475]


https://arxiv.org/abs/2305.10475

DDPM Sampling

rp ~ N(0,1) 21 ~ N(0,1)
A l

t =T DDPM 37T1 — \/1£5T (CE’T — %60> + OT2T 21~ N(O 1)

t =1 —1->{DDPM e "'—>5L‘1_\/11_52 $2—%69)+0222
\/

[2305.1047 5]


https://arxiv.org/abs/2305.10475

CFM Training and Sampling ®)

t ~U(|0,1])
l A

Lo ~ Pdatal(To), € ~ N (0, 1) — z(t|zg) = (1 — t)xo + te » CFM

> L = (Ug—(e—xo))2< Up

Solve ODE numerically for sampling

d
Ex(t) = Vy(x(?), 1)

[2305.10475]


https://arxiv.org/abs/2305.10475

Diffusion Models
Unfolding



Unfolding with Diffusion

Z+jets (simple)

Qo

DO

Normalized

p—t

OOOT O

Truth Truth Truth

o= O O

OO OOO OOO
OO

Model Model Model

OO0t

[2404.18807]


https://arxiv.org/abs/2404.18807

Unfolding with Diffusion )

Z+jets (simple) Top-pair with decays (hard)

3-
- 0.010 - part
g9 3 —— cINN
TEG % —— Transfermer
o1 = 0.005 - — CFM
S TraCFM

, 0 _VLD

e 0.000

<l=1. ] 11 - e = = = = -
’0“1§8 el . o Ehe e
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[2404.18807]


https://arxiv.org/abs/2404.18807

Open Discussion




