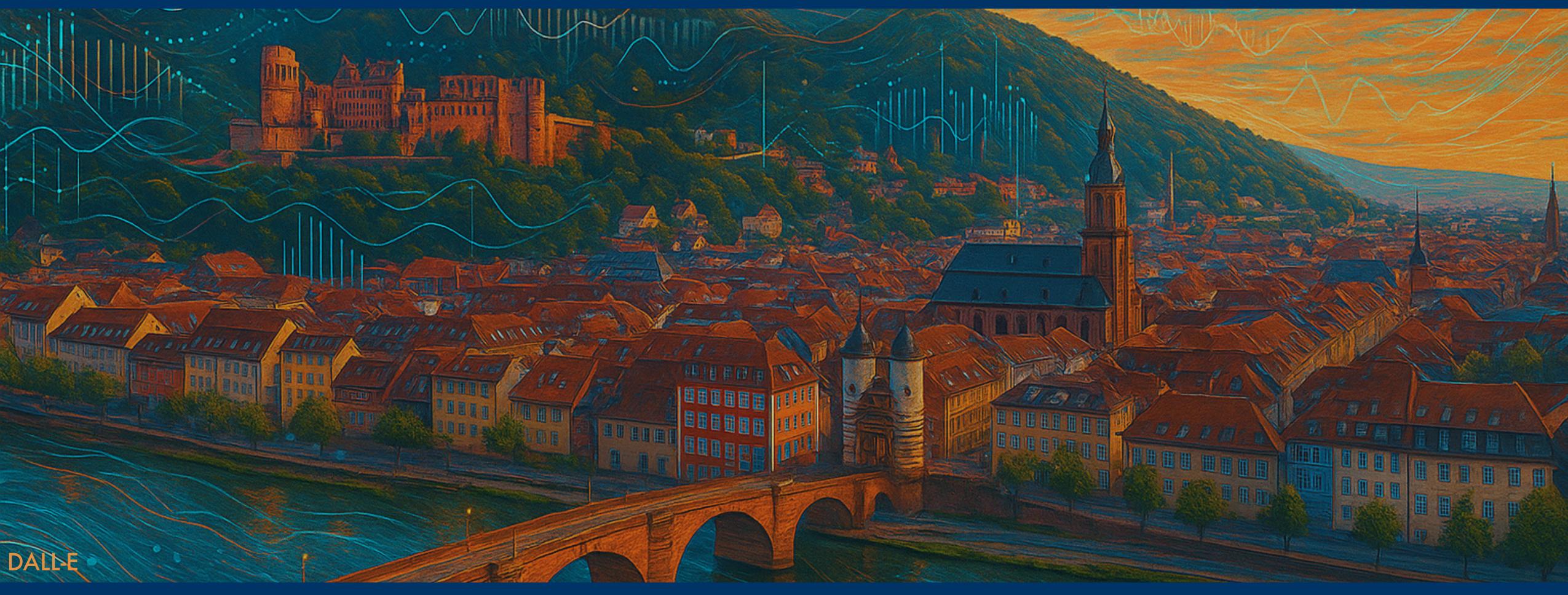
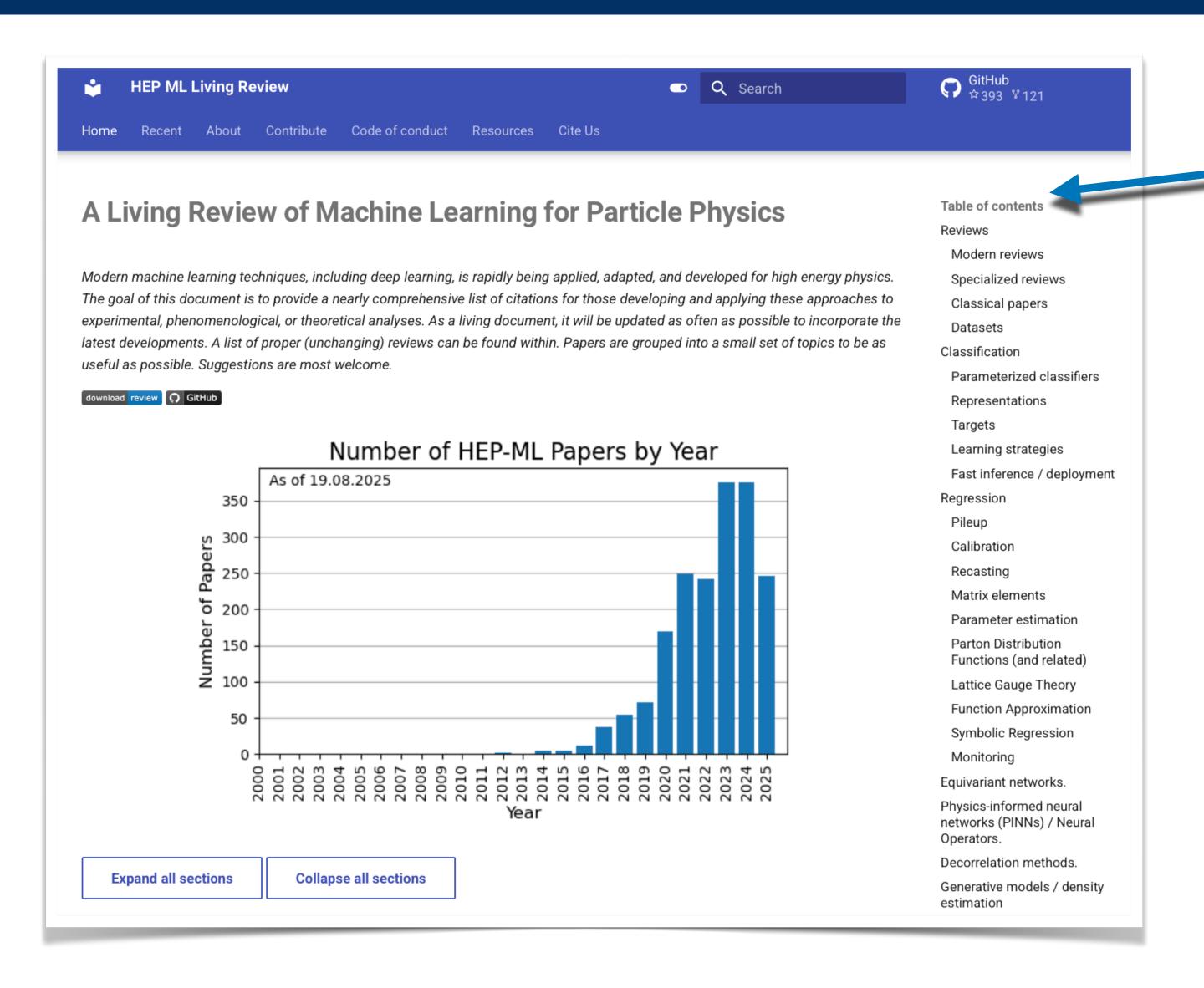
Deep Generative Models



IWR Summer School | Heidelberg | Ramon Winterhalder

HEP ML Living Review



Check LivingReview for many
ML4HEP applications

HEPML-Review

Plan of attack

1. Basics of DGMs and Normalizing Flows

2. GANs, VAE and SurVAE

3. Diffusion Models

Blackboard Session I

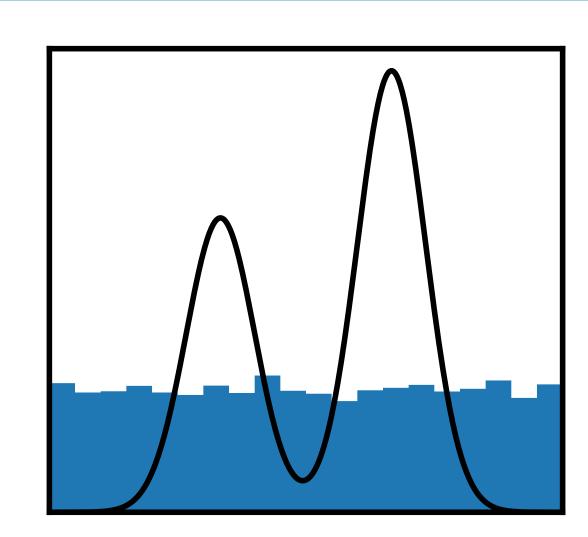
Normalizing Flows

Neural Importance Sampling

Monte Carlo integration

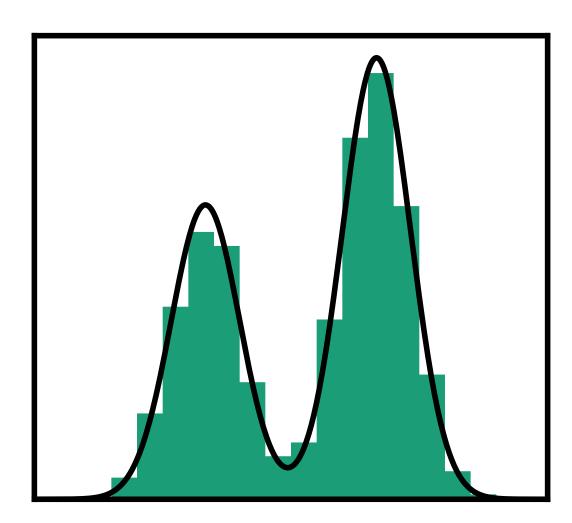
Calculate (differential) cross sections

$$d\sigma = \frac{1}{\text{flux}} dx_a dx_b f(x_a) f(x_b) d\Phi_n \left\langle |M_{\lambda,c,...}(p_a, p_b | p_1, ..., p_n)|^2 \right\rangle$$



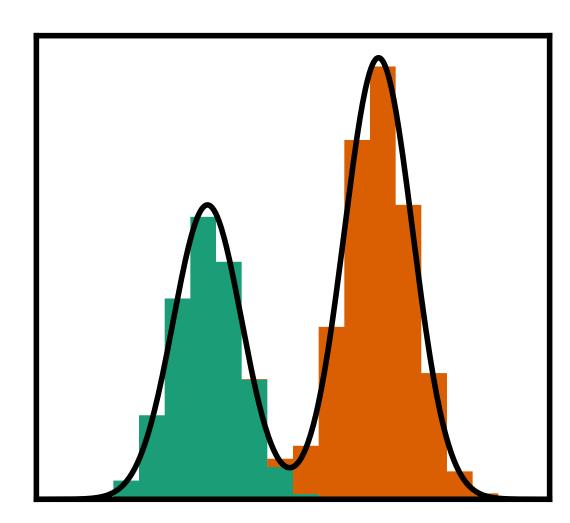
Flat sampling: inefficient

$$I = \langle f(x) \rangle_{x \sim \text{unif}}$$



Importance sampling: find p close to f

$$I = \left\langle \frac{f(x)}{p(x)} \right\rangle_{x \sim p(x)}$$



Multi-channel: one map for each channel

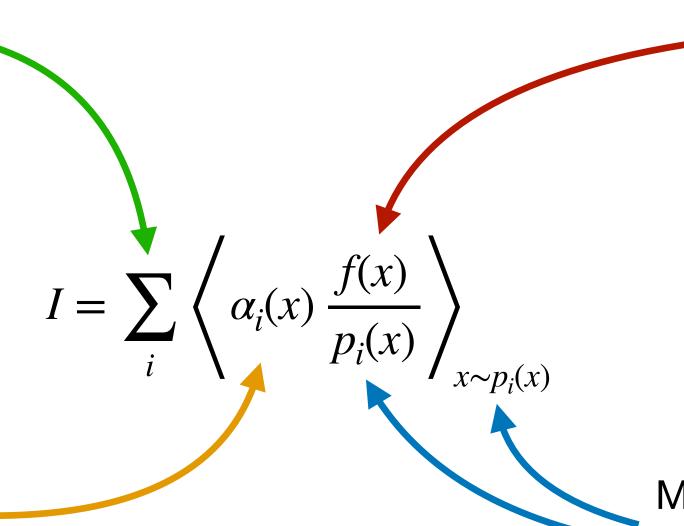
$$I = \sum_{i} \left\langle \alpha_{i}(x) \frac{f(x)}{p_{i}(x)} \right\rangle_{x \sim p_{i}(x)}$$

Event generation in MadGraph

Calculate (differential) cross sections
$$d\sigma = \frac{1}{\text{flux}} dx_a dx_b f(x_a) f(x_b) d\Phi_n \left\langle |M_{\lambda,c,\dots}(p_a,p_b \mid p_1,\dots,p_n)|^2 \right\rangle$$

Sum over channels

MadGraph: build channels from Feynman diagrams



Integrand

MadGraph: $d\sigma/dx$

Channel weights

MadGraph: $\alpha_i^{\text{MG}}(x) \sim |M_i|^2$

Channel mappings

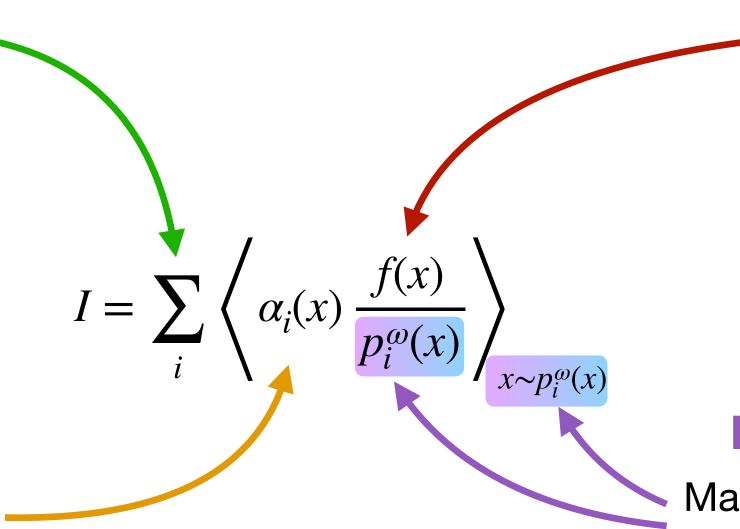
MadGraph: use amplitude structure, ... Analytic mappings + refine with **VEGAS** (factorized, histogram based importance sampling)

Event generation in MadNIS

Calculate (differential) cross sections
$$d\sigma = \frac{1}{\text{flux}} dx_a dx_b f(x_a) f(x_b) d\Phi_n \left\langle |M_{\lambda,c,...}(p_a,p_b \mid p_1,...,p_n)|^2 \right\rangle$$

Sum over channels

MadGraph: build channels from Feynman diagrams



Integrand

MadGraph: $d\sigma/dx$

Channel weights

MadGraph: $\alpha_i^{\text{MG}}(x) \sim |M_i|^2$

Learned channel mappings

MadGraph: use amplitude structure, ... Analytic mappings + refine with VEGAS

Event generation in MadNIS

Calculate (differential) cross sections
$$d\sigma = \frac{1}{\text{flux}} dx_a dx_b f(x_a) f(x_b) d\Phi_n \left\langle |M_{\lambda,c,...}(p_a,p_b \mid p_1,...,p_n)|^2 \right\rangle$$

Sum over channels

MadGraph: build channels from Feynman diagrams

$$I = \sum_{i} \left\langle \alpha_{i}^{\xi}(x) \frac{f(x)}{p_{i}^{\omega}(x)} \right\rangle$$

Learned channel weights

MadGraph: $\alpha_i^{\text{MG}}(x) \sim |M_i|^2$

$$\alpha_i(x) \to \alpha_i^{\xi}(x) = \alpha_i^{\text{MG}}(x) \cdot K_i^{\xi}(x)$$

Learned channel mappings

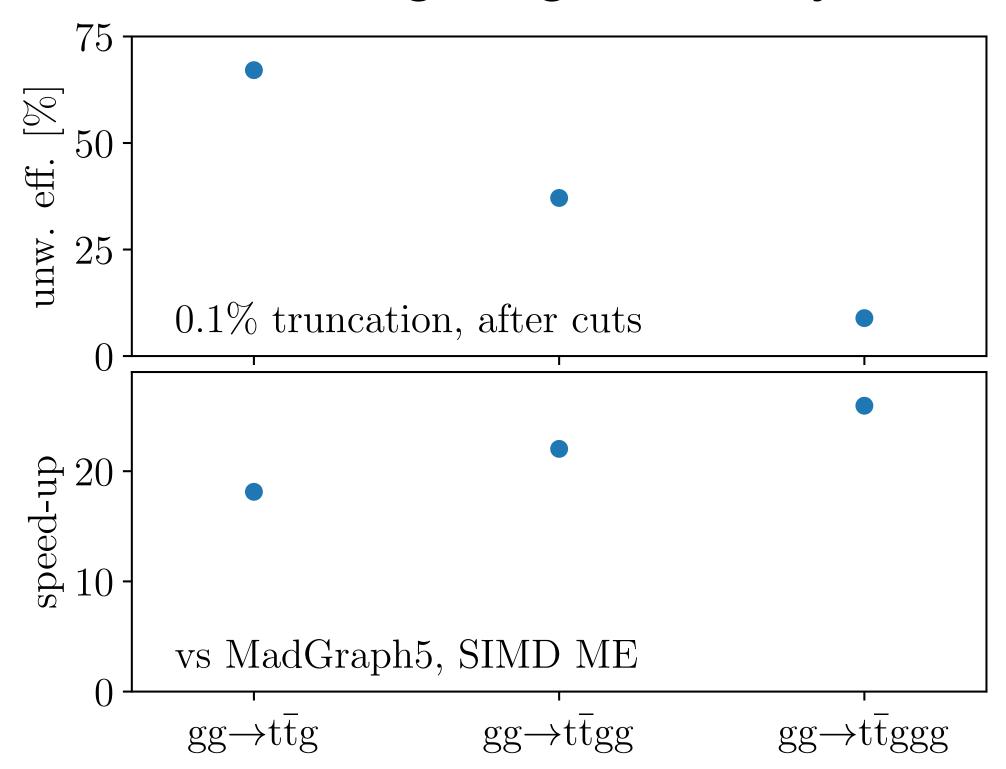
MadGraph: use amplitude structure, ... Analytic mappings + refine with VEGAS

parametrize with NN ———

preliminary

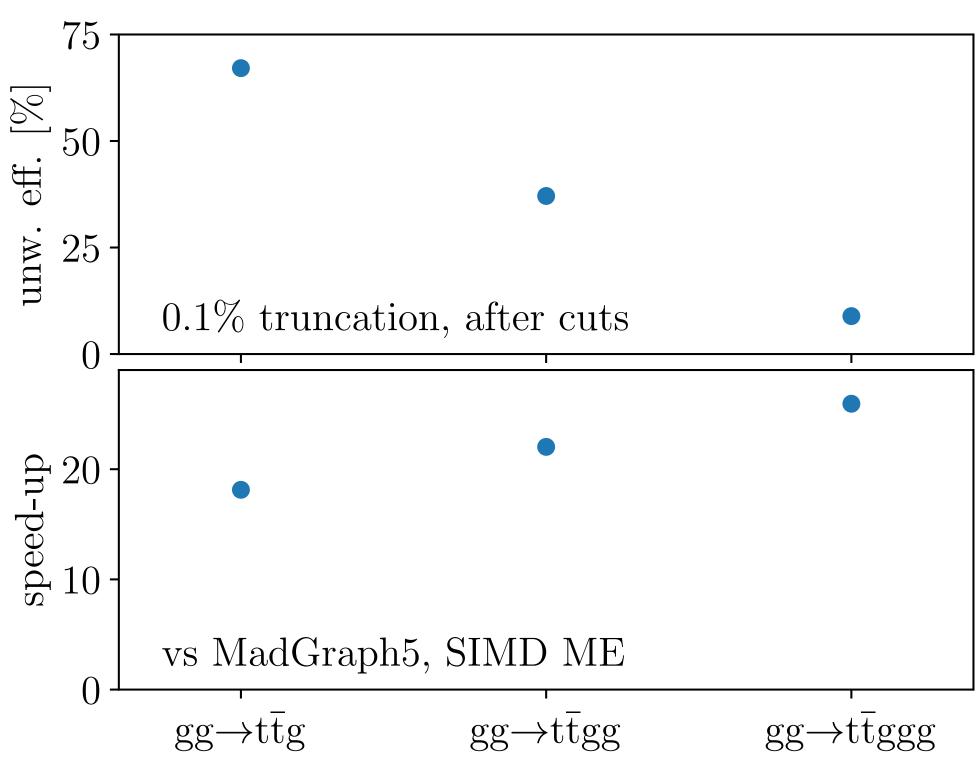
Unweighting performance

Unweighting efficiency

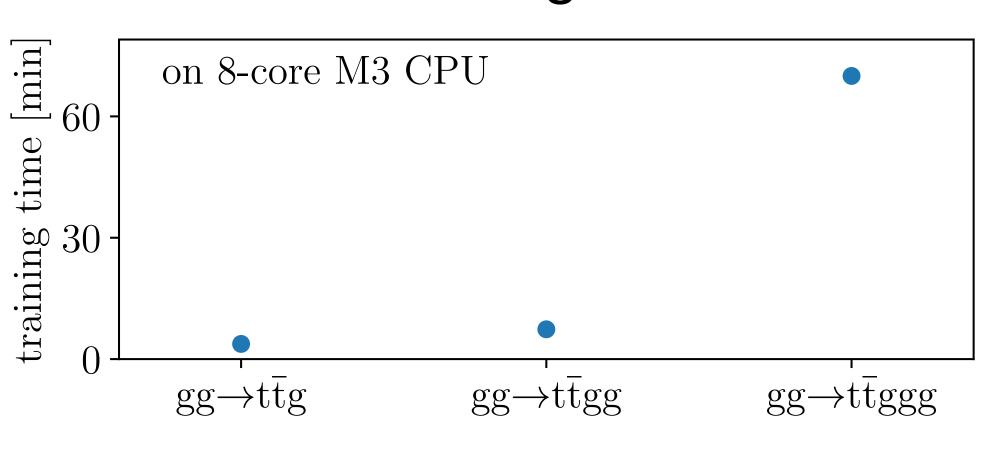


(preliminary)

Unweighting performance

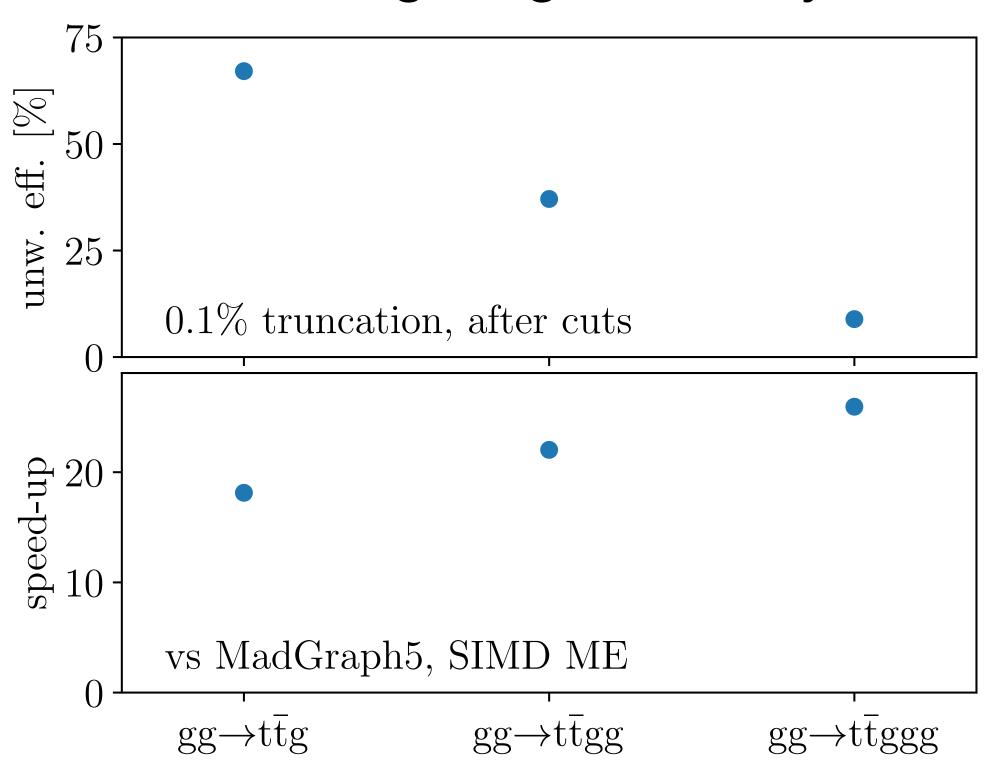


Training time

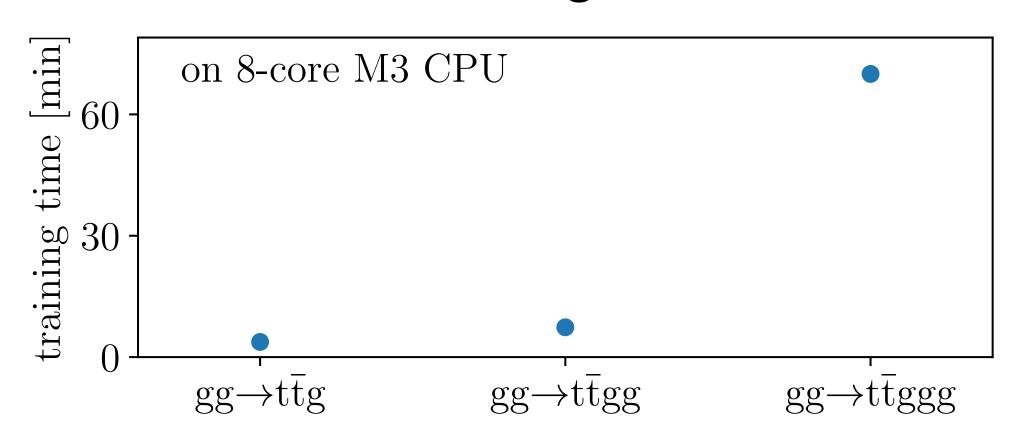


(preliminary)

Unweighting performance

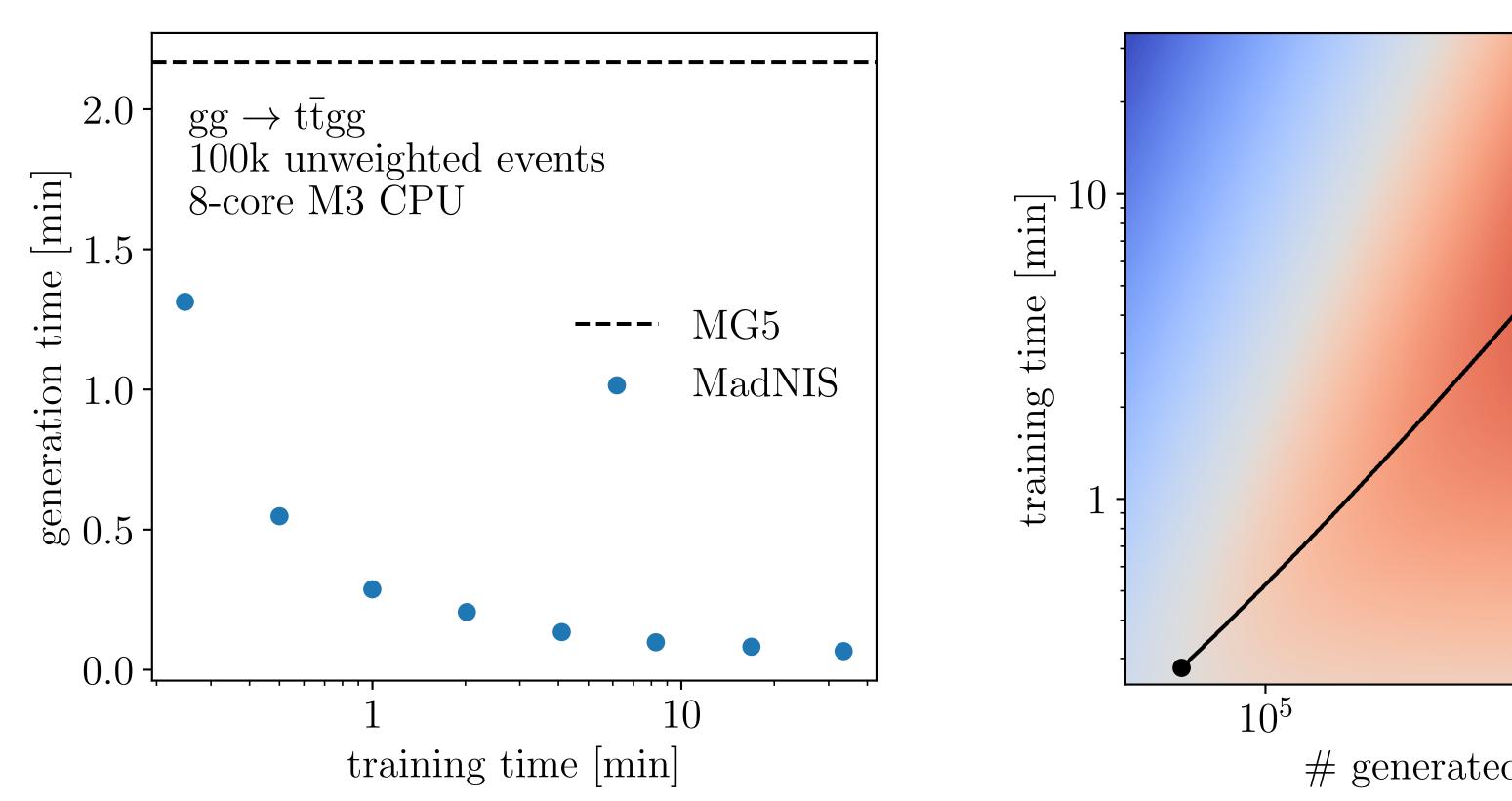


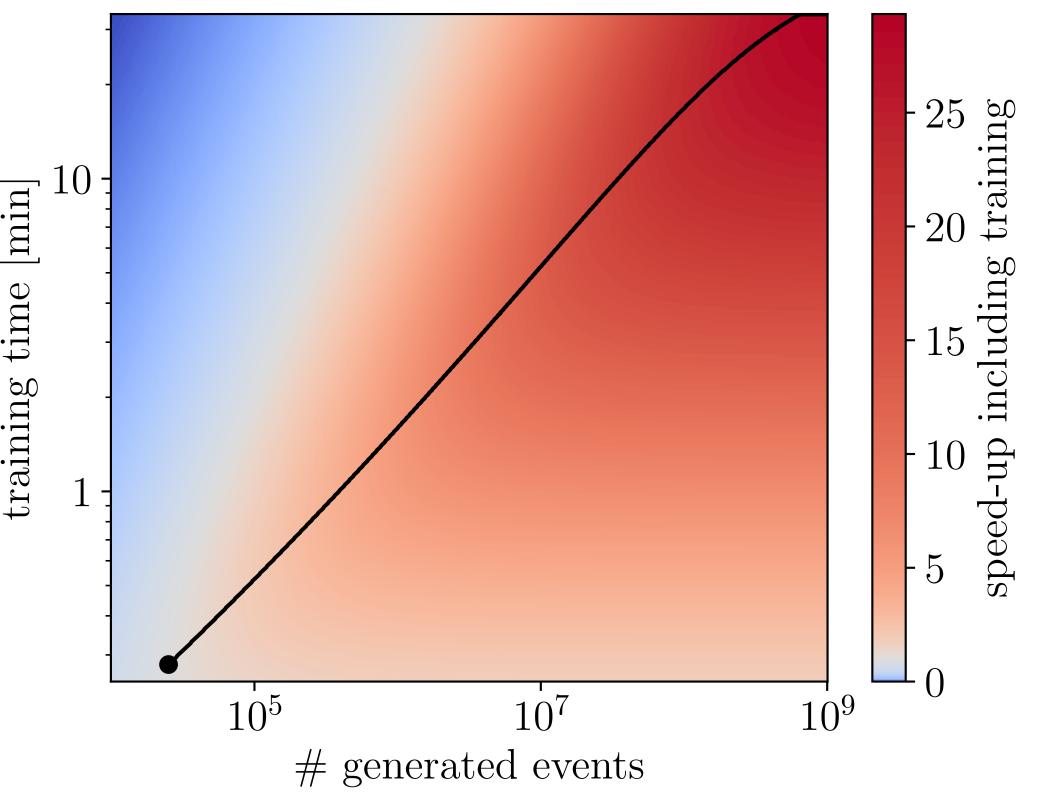
Training time



→ Does it still pay off?

Training time and amortization

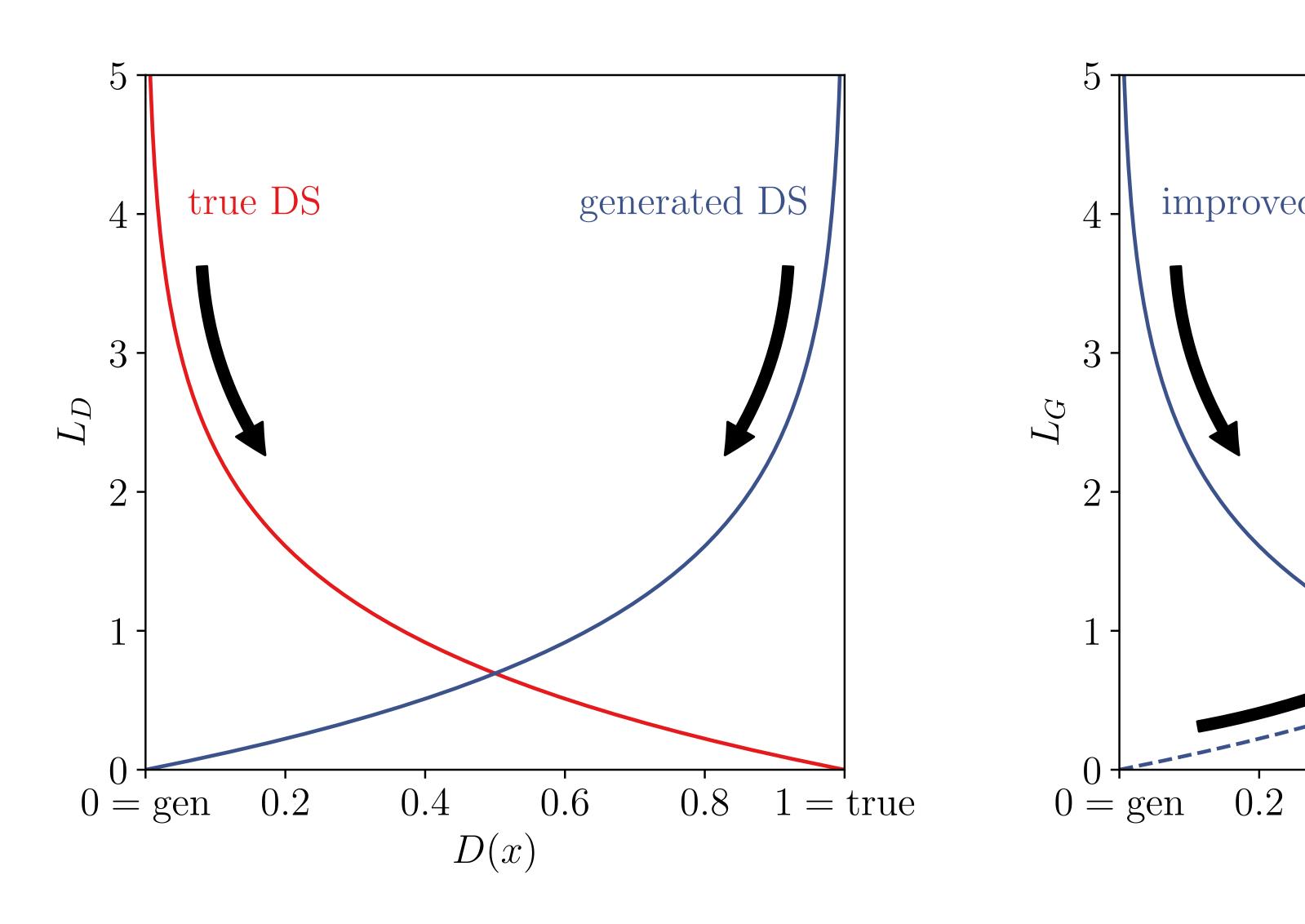


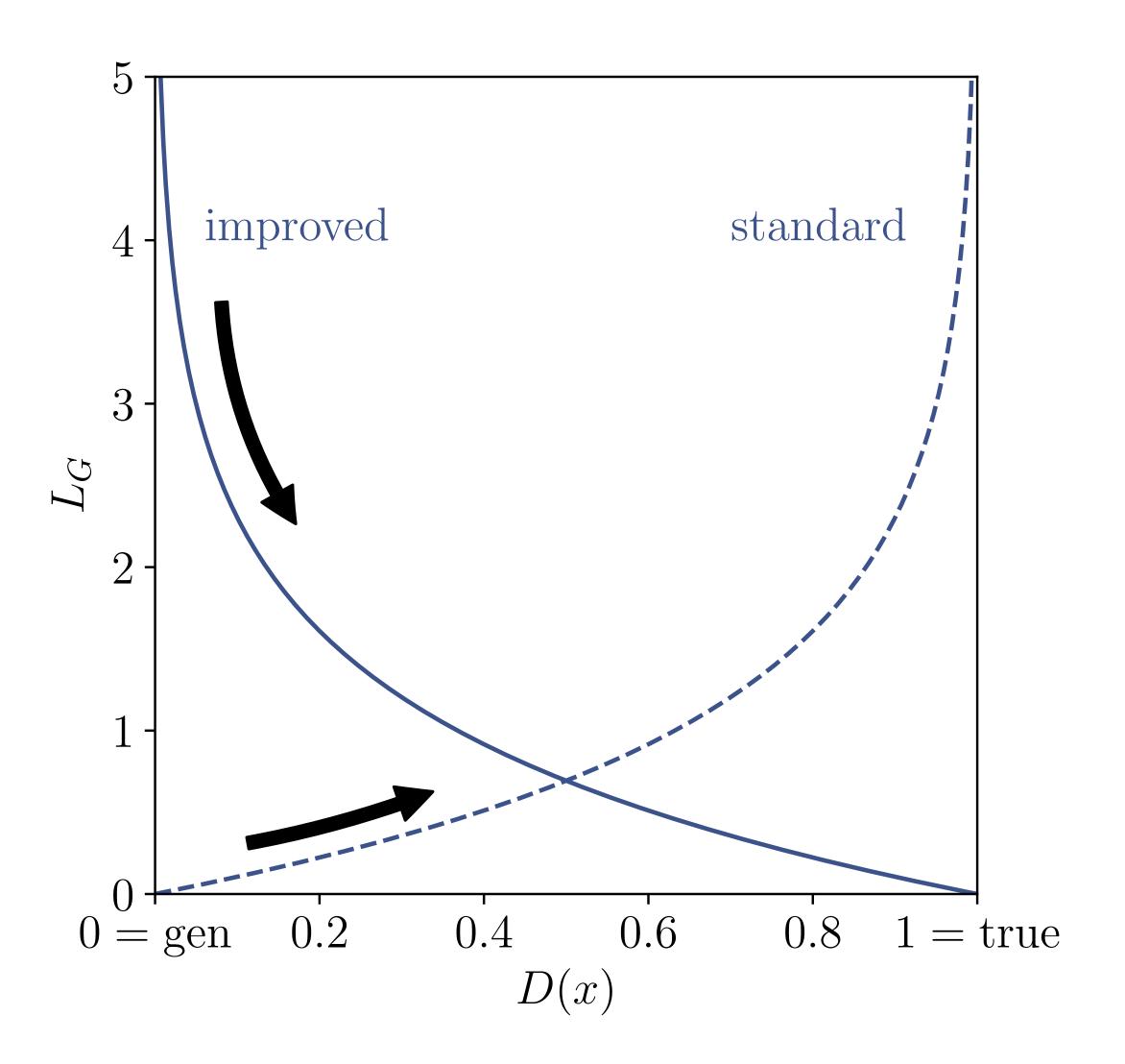


MadNIS is faster starting at 10k events!

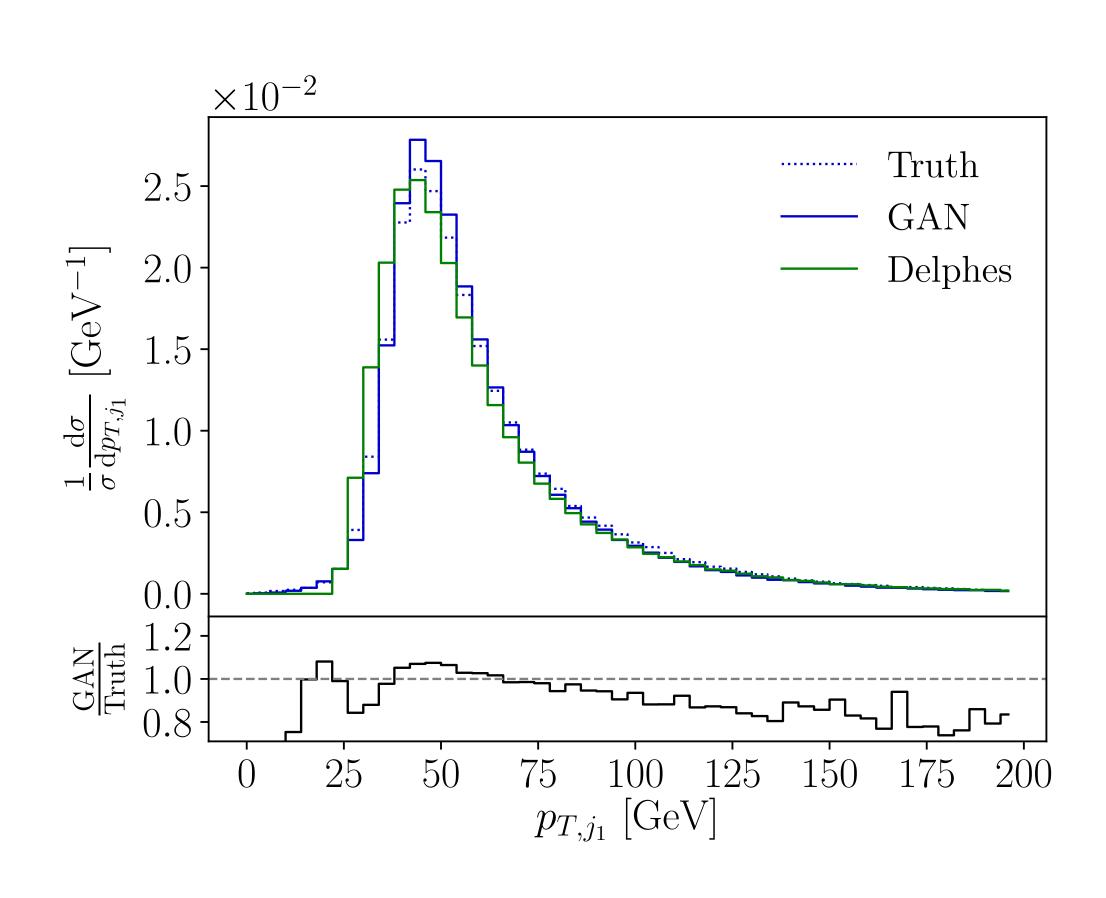
Blackboard Session II

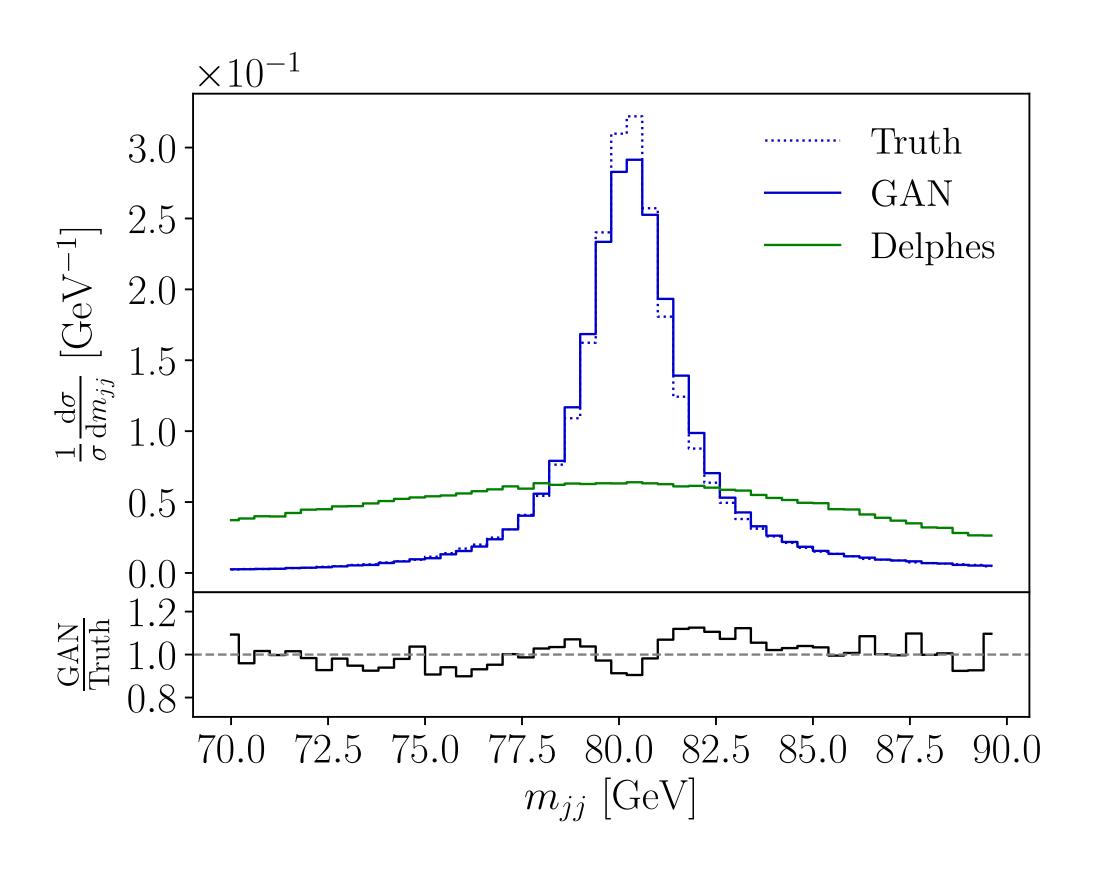
GAN Loss



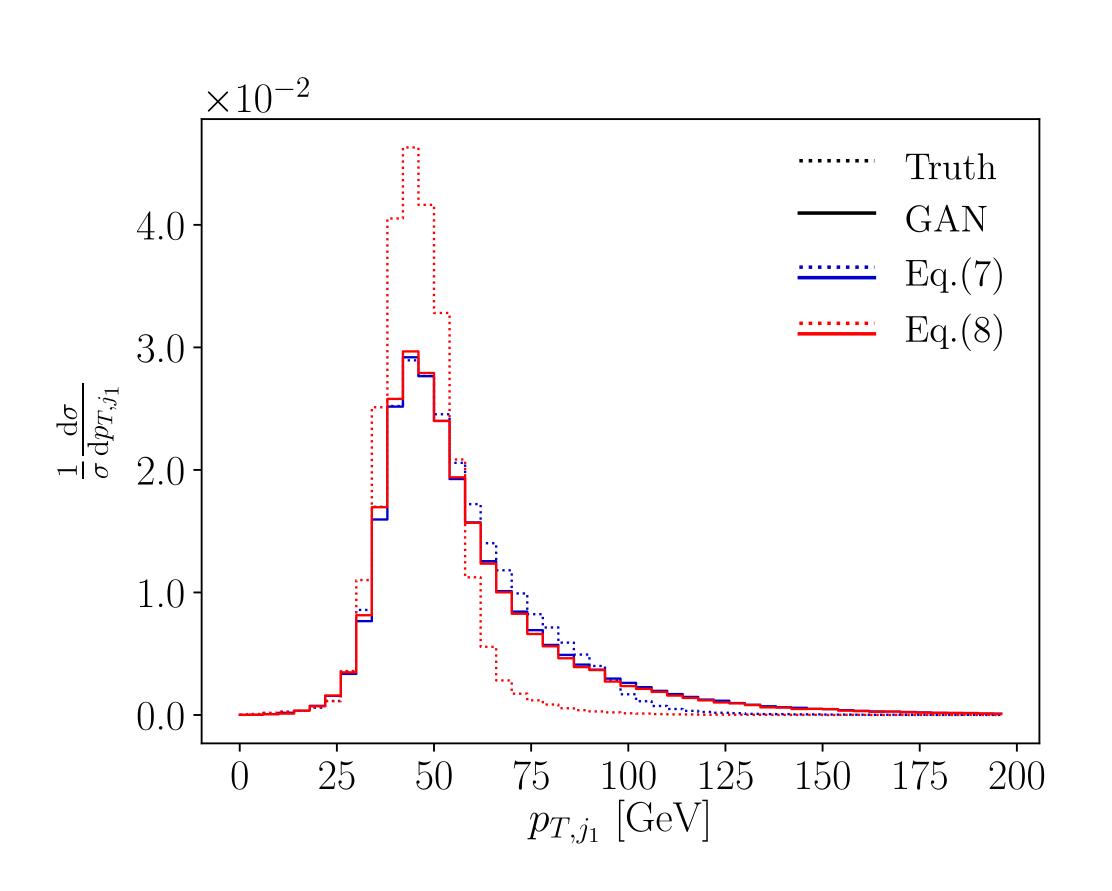


GAN Unfolding





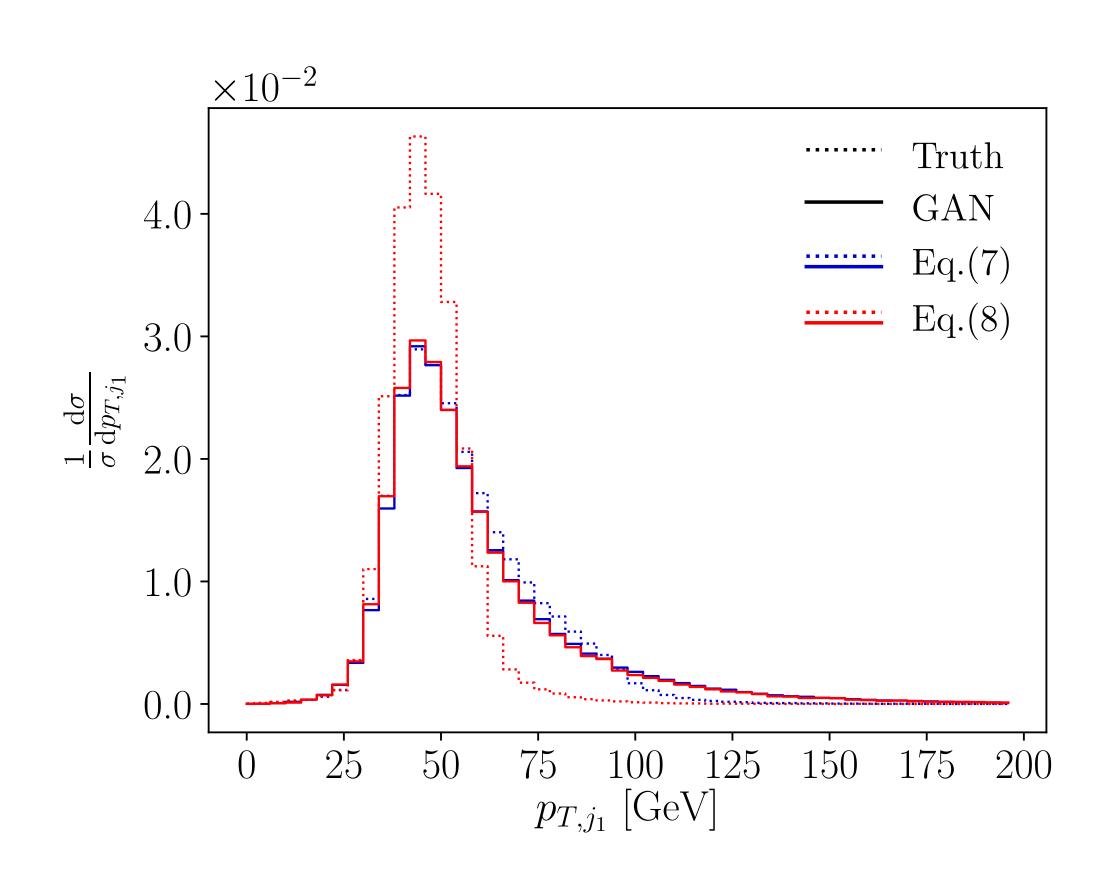
GAN Unfolding

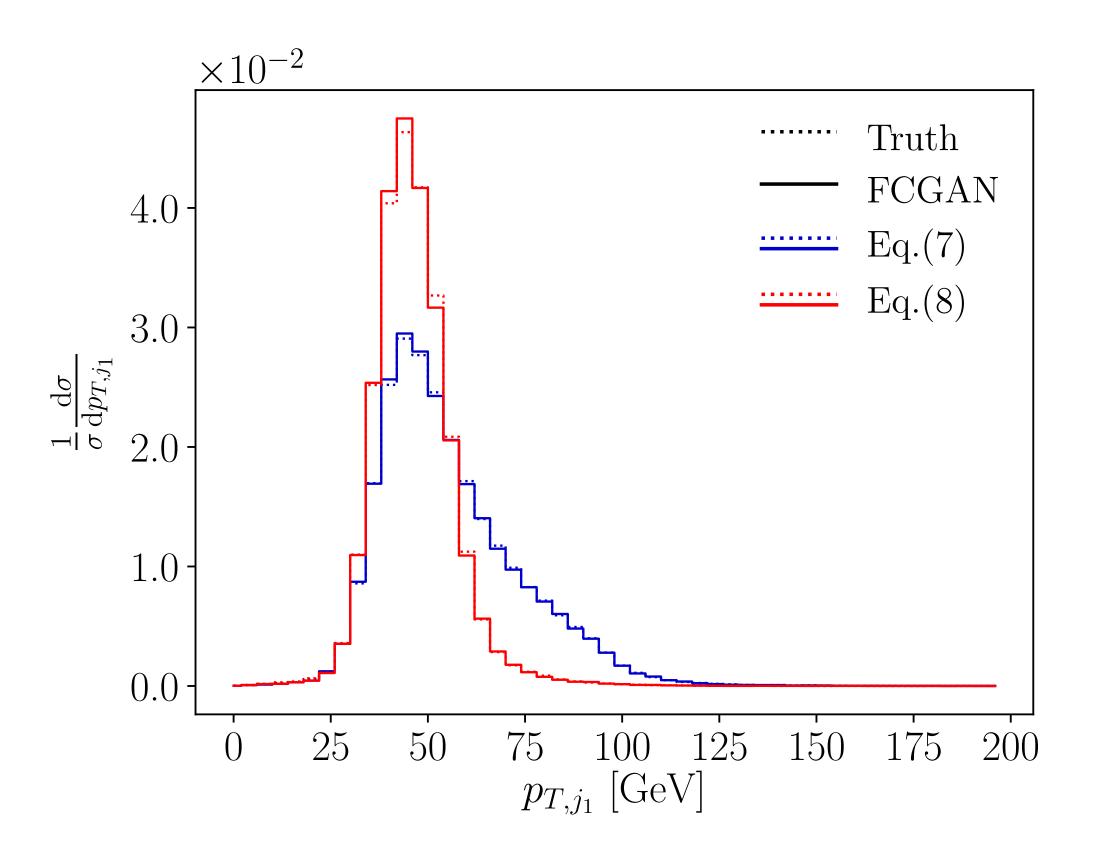


Cut I:
$$30 \,\text{GeV} < p_{T,j_1} < 100 \,\text{GeV}$$

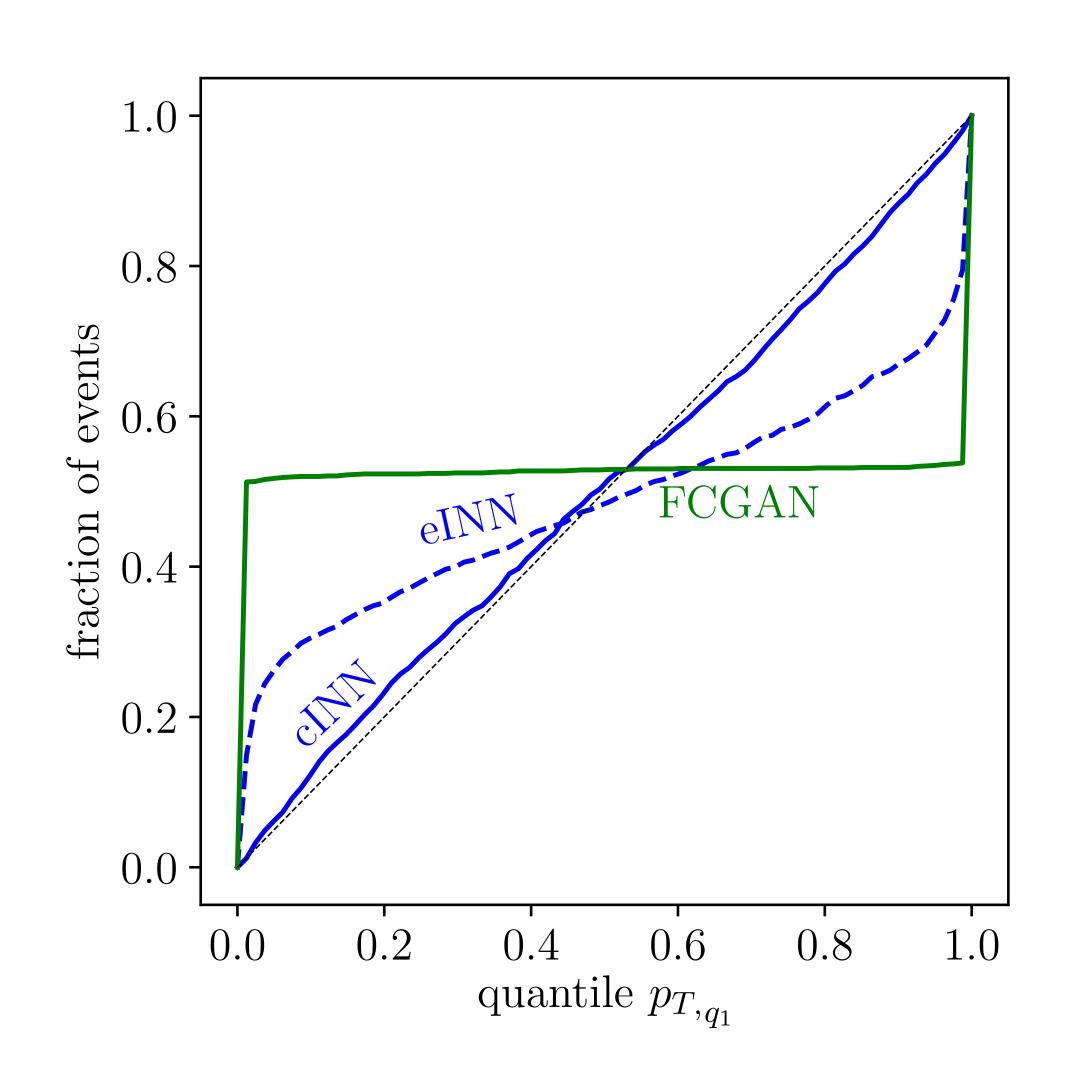
Cut II:
$$30 \,\text{GeV} < p_{T,j_1} < 50 \,\text{GeV}$$
 $30 \,\text{GeV} < p_{T,j_2} < 60 \,\text{GeV}$

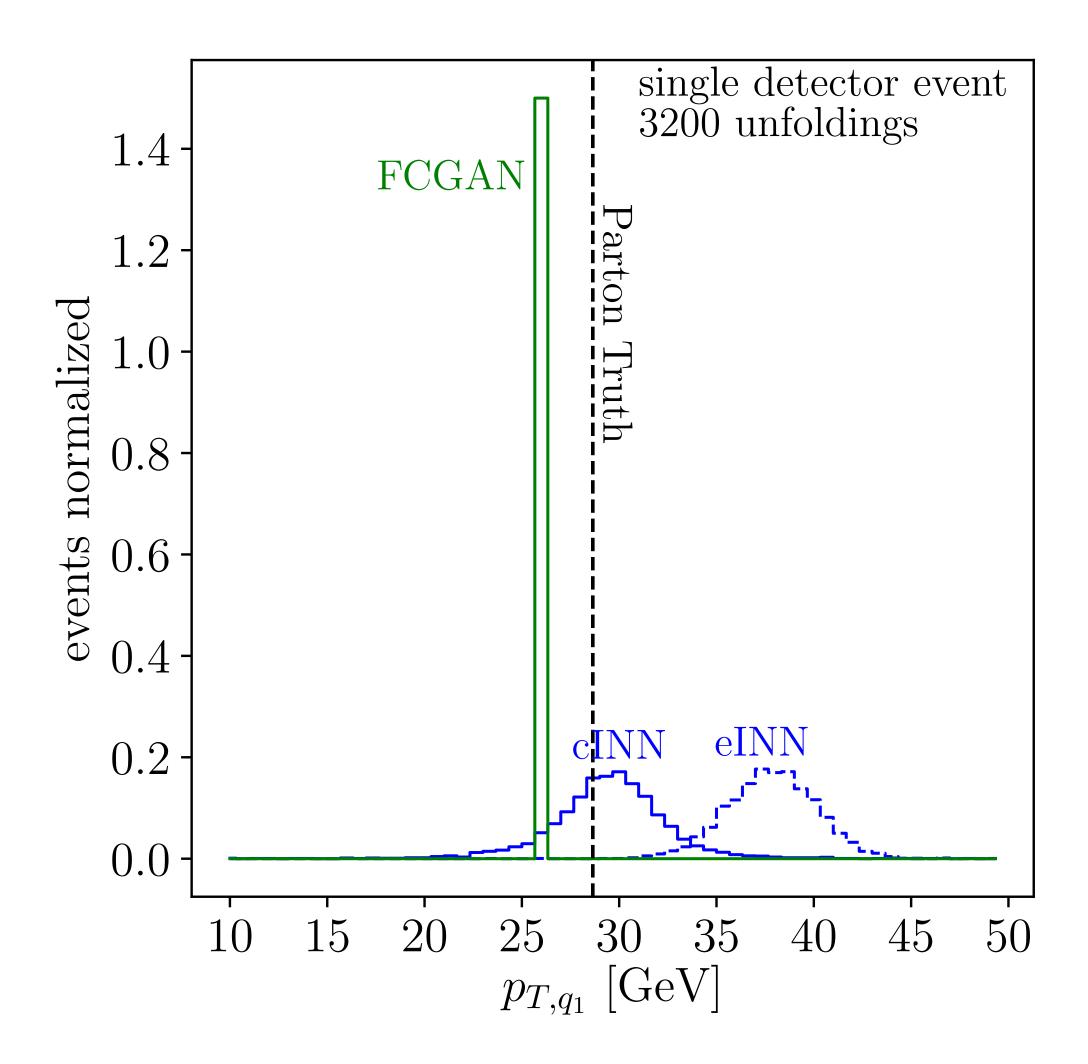
FCGAN Unfolding





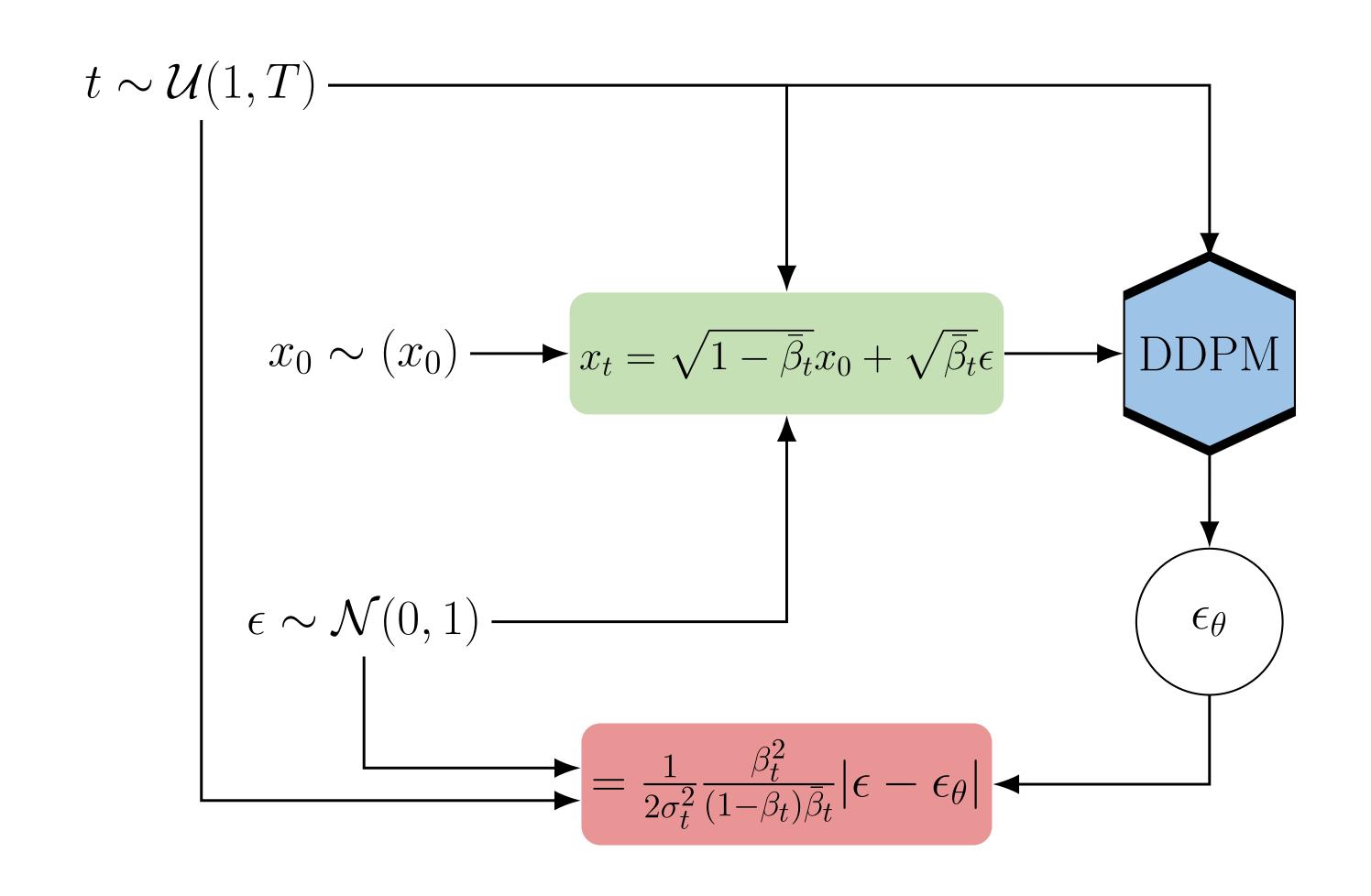
cINN Unfolding



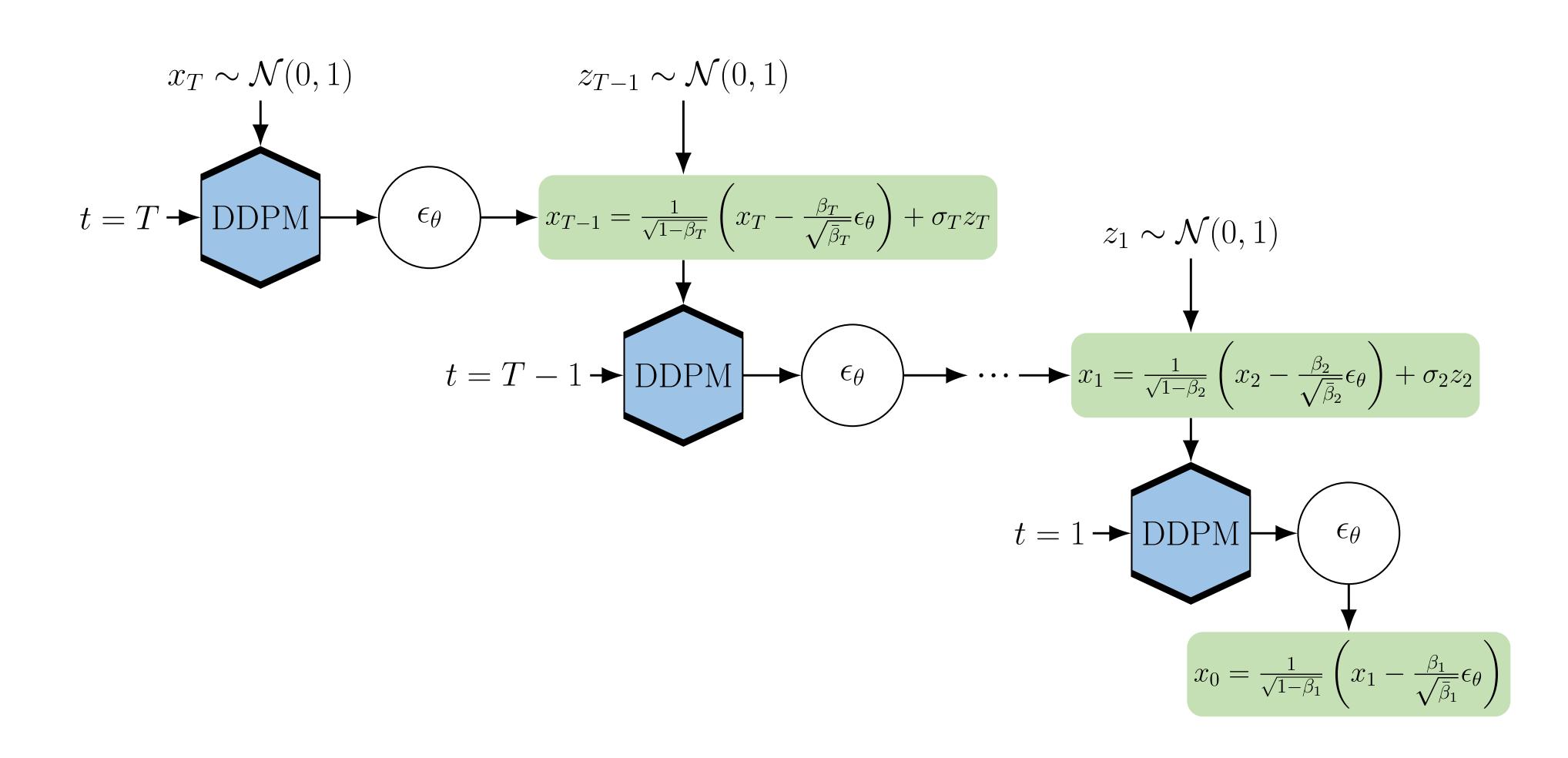


Blackboard Session III

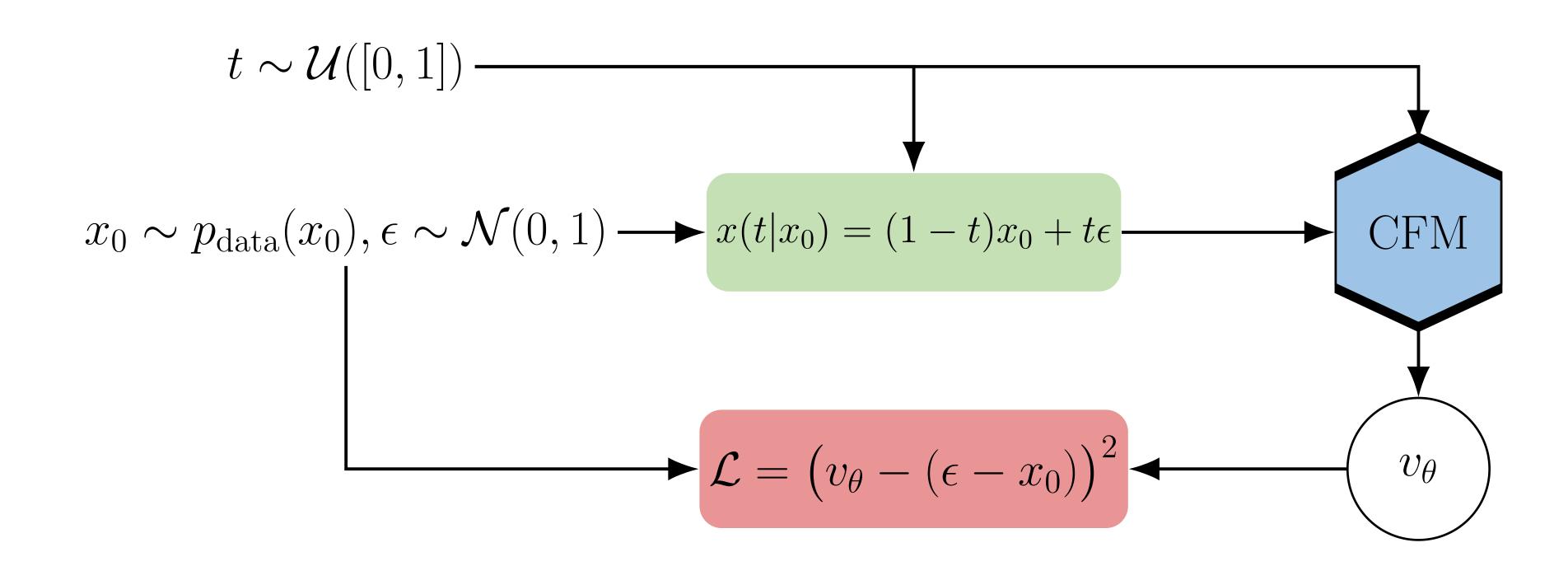
DDPM Training



DDPM Sampling



CFM Training and Sampling



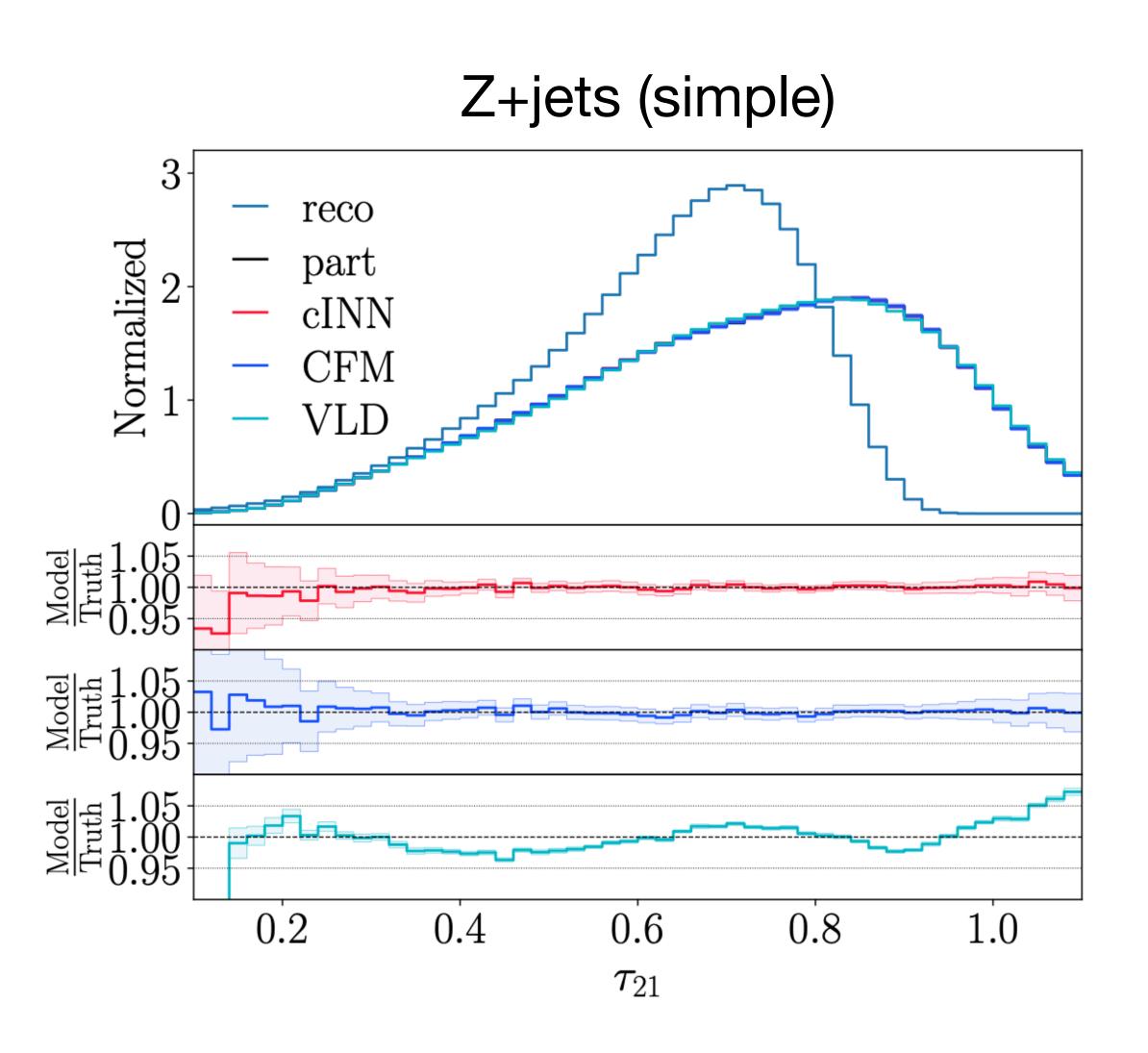
Solve ODE numerically for sampling

$$\frac{\mathrm{d}}{\mathrm{d}t}x(t) = v_{\theta}(x(t), t)$$

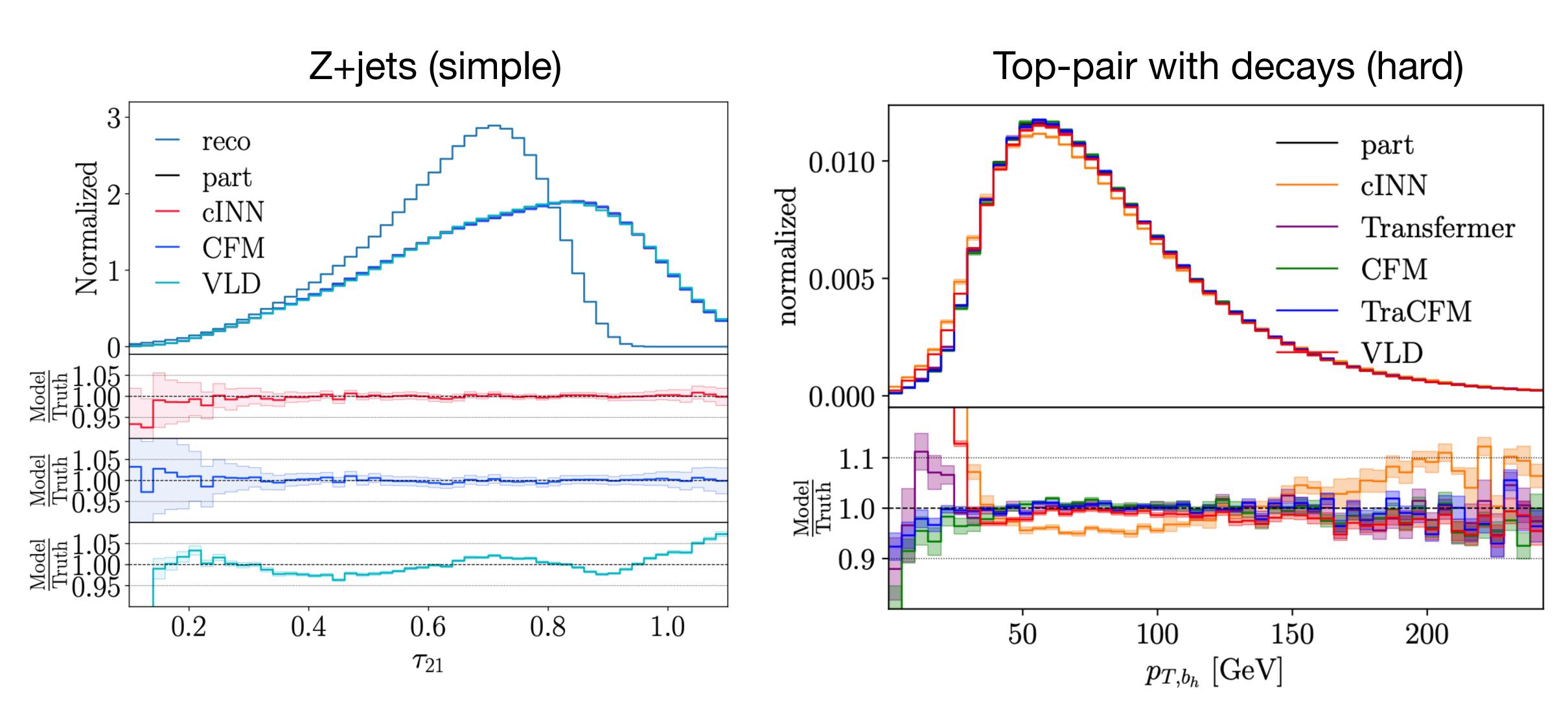
Diffusion Models

Unfolding

Unfolding with Diffusion



Unfolding with Diffusion



Open Discussion