Der Urknall im Labor Das ALICE Experiment

bmb+f - Förderschwerpunkt

ALICE

Großgeräte der physikalischen Grundlagenforschung

Gliederung

CERN und der LHC Beschleuniger

- Wozu Experimente am LHC
- Das Experiment ALICE
- Strangeness
- Ausblick

CERN, das Europäische Teilchenlabor

Conseil Européenne pour la Recherche Nucléaire

- Gegründet 1954, älter als EU
- Europäische Mitgliedstaaten
 - Budget ca 1.200 MCHF/a, Deutschland 19%
 - Non-member states ~100 MCHF/a
- Zur Zeit ca 2500 staff, 8000 externe ,user'

(ALICE: 1000 Mitglieder)

Large Hadron Collider (Large Heavy Ion Collider)

CERN Accelerator Complex

Der Large Hadron Collider (LHC)

- 27 km Ringbeschleuniger (früherer LEP-Tunnel)
 supraleitende Ablenkmagnete, 8.36 Tesla

 ~200 000 mal Erdfeld

 1.9 K: der kälteste und größte Kühlschrank der Welt
 2 in 4 Punkten kollidierende Teilchenstrahlen
 Protonen von 7 TeV, oder
 Bleiatomkerne von 2.7 TeV/Nukleon
 Strahlenergie begrenzt durch Ablenkfeld (für gegebenen Ring)
 - Bis Ende 2012 nur halbe Energie, ab 2015 volle Energie

Historie:

- Idee 1984
- 1991: Erster Magnet mit 10 Tesla, Proposal und Beschluss

Erster Magnet installiert am 7. März 2005

18 m lang 35 t schwer

Ca 1200 Ablenkmagnete im Beschleunigertunnel

Raum – Materie – Zeit Energie ist der Schlüssel

Werner Heisenberg kleine Strukturen – kleine Abstände

Albert Einstein

neue und schwere Materie

Ludwig Boltzmann

hohe Temperaturen – frühes Universum

Materie bei extremen Bedingungen

- $E = 7000 \text{ m}_0 \text{c}^2$ 'ultra-relativistisch' (3000 für Pb)
 - v = 99.9999991% c, d.h. v = c 10 km/h
- **T** ~ 10^{13} K (Sonne $1.4 \cdot 10^{7}$ im Zentrum)
- Dichte: ca. 50 ... 100 x Kerndichte (3·10¹⁴ t/m³)
- Nukleonen 'schmelzen' zum Quark-Gluon-Plasma
 Bedingungen wie kurz nach dem Urknall (~1 µs)

Temperaturentwicklung seit dem Urknall

'Die Reise zum Urknall'

Die Welt des Kleinsten

	Größe [m]	Kraft	Ladungen	Austausch- teilchen	Theorie
Festkörper		Van der Waal's-Kraft			
Atome	10 ⁻¹⁰	Elektro- Magnetisch	El. Ladung 1+1 (+,–)	Photon	Quanten- Elektro- Dynamik
Kerne	10 ⁻¹⁵	'Kernkraft'			
Quarks	<10 ⁻¹⁸	Starke WW	'Farbe' 3+3 (rgb)	Gluon	Quanten- Chromo- Dynamik

Was wissen wir über Quarks

- (A) Abstandgesetz
 - Elektrische Kraft ∝ 1/R²
 - Farbkraft ~ konstant
 - unabhängig vom Abstand
 - 'String' zwischen Quarks
- (B) Neutrale Objekte
 - Elektrisch: $+ \rightarrow$ neutral
 - Farbladung: 3 Farben, oder Farbe + Anti-Farbe \rightarrow neutral

Stabile Objekte aus Quarks

Farbneutral sind

Mischung von 3 Farben:

Baryon, z.B. Proton, Neutron

Farbe + Antifarbe: Meson, z.B. Pi-Meson

Quarks können nicht getrennt werden:

'Confinement'

- Energieaufwand $\rightarrow \infty$
- String reißt' unter

Erzeugung eines Mesons

Vollendung oder Überwindung des **Standardmodells**

- Bis 1995 alles gefunden außer **Higgs**
- Das Higgs-Teilchen ist für die träge Masse zuständig
- 2012: Higgs mit Masse~125 GeV am LHC
- Teilchen der **Dunklen Materie**? Bis jetzt noch nichts gefunden.

Was tun wir bei ALICE?

- Kollisionen zwischen Bleikernen
 - 416 Nukleonen (Protonen und Neutronen)
- 5.5 TeV pro Nukleonpaar (bis 2012 2.76 TeV)
 - 0.2 mWs = Energie einer Fliege im Flug
 - Auf winzigstem Raum: verhält sich zu einem Sandkorn wie ein Sandkorn zur Erde!
- Als Wärme bzw. Temperatur: 10¹³ Grad,
 - entspricht etwa 1 µs nach dem Urknall
- 10.000 Kollisionen pro Sekunde
 - Etwa 100 200 davon ,zentral'
 - Im Feuerball ,schmelzen' die Nukleonen in Quarks und Gluonen zum

Quark-Gluon-Plasma

zerfällt in ca 50.000 Teilchen, von denen ALICE etwa 5.000 sieht und einzeln misst 1.4.2015 pg

Szenario einer Schwerionenkollision

Vor dem Stoß

Durchdringung, Hohe Teichendichte Hohe Energiedichte

Feuerball

Expansion Hadronisierung Entkopplung

✔ Zeit
 1.4.2015 pg

Normale Kernmaterie:

Dichte ca. 10¹⁸ t/m³

Quark-Gluon Plasma

Nicht mehr wechselwirkende Elementarteilchen → zum Detektor

Zwei Kerne kurz nach der Kollision, Simulation

Eine zentrale Bleikollision in ALICE

Zentrale Kollision Pb-Pb

Bis zu 5.000 Teilchen im Detektor

Wir messen alles:

Richtung

- Energie
- Teilchenart

für alle Teilchen!

Eine technische Herausforderung

The ALICE Collaboration

36 countries, 131 institutes, 1200 members 130 MCHF capital cost + 'free' magnet

Time Projection Chamber, Prinzip

ALICE TPC: eine 500-Mpixel-Kamera mit 200 Hz

Transition Radiation Detector = Übergangs-Strahlungs-Detektor

Identifikation von schnellen Elektronen:

- Nur sie erzeugen im Radiator Röntgenquanten
- dadurch lokal erhöhte
 Energieabgabe im Gas (Xenon)
- 6 Lagen in ALICE
 - Fehlidentifikationen < 1%</p>
 - Radiator: viele Grenzflächen

Einbau eines TRD Supermoduls

ALICE: Baustelle 2004

ALICE Januar 2007

ALICE heute

ALLES STATE

2

Teilchenidentifikation in der TPC

Strangeness und Quark-Gluon-Plasma

Standardmodell

Normale Materie: u, d, e, v, γ

- Alle anderen Quarks nicht stabil → nur kurzzeitig erzeugbar
- Am leichtesten: s-Quark
- Teilchen die s-Quarks enthalten heißen 'seltsam' (strange)
- Das s-Quark ist viel schwerer als u, d, aber leichter als die anderen
- Thermodynamik: je höher die Temperatur, desto schwerere Teilchen werden spontan erzeugt

Im Quark-Gluon-Plasma sollten 'strange quarks' reichlich entstehen

Hadronisierung \rightarrow seltsame Teilchen

Wie weist man Strangeness nach?

Seltsame Teilchen zerfallen nach einigen cm Flug \rightarrow sog. V₀

- K_{s}^{0} (sd7sd) $\rightarrow \pi^{+}\pi^{-}$ (K_s ungeladen: Spur unsichtbar)
- Λ uds $\rightarrow p \pi^{-}$ (Lambda)
- $\Lambda \quad \overline{uds} \quad \rightarrow p \pi^+ \quad \text{(Anti-Lambda)}$
- $\Xi^- dss \rightarrow \Lambda \pi^-$ (Xi)

Aus den Impulsen der Tochterteilchen kann die Masse des zerfallenen Teilchens berechnet werden ('invariante Masse')

 $\rightarrow p \pi$ - (Zerfallskaskade)

Je höher die Temperatur, desto leichter werden schwere Teilchen erzeugt

1.4.2015 pg Danke für Ihre Aufmerksamkeit

Reise zum Urknall

15.000 Millionen Jahre

1.000 Millionen Jahre

300.000 Jahre

3 Minuten

1 Sekunde

10⁻¹⁰ Sekunden

10-34 Sekunden

10-43 Sekunden

10³² K

Strahlung

Teilchen

Quark

Anti-Quark

Elektron

Schwere Teilchen,

die die schwache

Kraft vermitteln

W/\

W'

w

10²⁷ K

Positron (Anti-Elektron)

Proton

Meson

Helium

LI Lithium

B

He

Wasserstoff

Deuterium

Neutron

10¹⁵ K

10¹⁰ K

10⁹ K

6000 K

18 K

Frontend Electronics: Architecture

Die TPC Auslesekammern

- 2 x 18 Sektoren, je 2 Kammern \rightarrow 72 Kammern
- 557568 Kanäle
- Gate durch Trigger
- Padgrößen 4x7.5,
 - 6x10, 6x15 mm²
- 10 bit ADC

- 5.7 MHz sampling, 512 Zeitbins
- Ortsauflösung 800 … 1250 μm (rφ, z)

Kleine Kammer

Phasendiagramm

ITS Installation 15.3.07

-

17

The "L3" Magnet

L3 Magnet

