Cosmology with the Square Kilometre Array

Marta Spinelli Part One What is SKA Cosmology?

Tonale Winter School, 5-10 December 2021

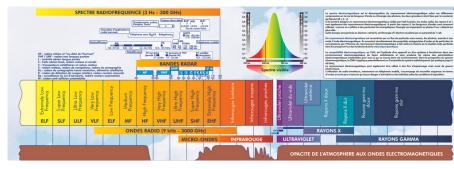
Acknowledgments & References

The content of these slides is inspired by various lectures given by different experts in SKA Cosmology.

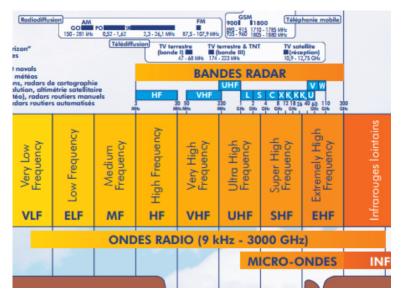
I would like to thank for letting me steal here and there:

Phil Bull (QMUL), Stefano Camera (UniTo), Alkistis Pourtsidou (Edinburgh), Laura Wolz (UNIMAN)

SKA specific material can be found at: https://www.skatelescope.org or https://www.skaobservatory.org/. See also: Advancing Astrophysics with the Square Kilometre Array, https://pos.sissa.it/215/


What is SKA Cosmology?

A never seen before anything like this Radio Facility will be available for doing science soon, the Square Kilometre Array.


- What is Radio Astronomy and what is the SKA?
- What are SKA pathfinders and precursors?
- How Radio Astronomy can be interesting for Cosmology?
- Why cosmologists talk more and more about Intensity Mapping?

Light Spectrum

www.emitech.fr

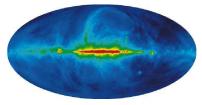
Radio Waves

A little bit of history

- In the early 30s, at Bell Laboratories Karl Jansky built an antenna to receive radio waves at about 20 MHz.
- 1942: Radio waves from the Sun discovered during the World War II.
- Radio astronomy progressed with many great discoveries, such as the discovery of pulsars by Jocelyn Bell in 1967.
- Today radio-telescopes all over the world (VLA,ALMA,LOFAR,HERA,..)

Today (in SKA perspective)

[Courtesy of A. Bonaldi]


Why radio signal from the Universe?

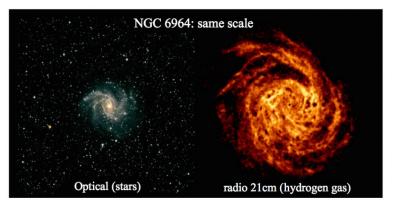
- Any charged particle when accelerated or de-accelerated gives rise to electromagnetic radiation.
- Synchrotron radiation due to electrons with relativistic velocities gyrate and radiate in the presence of magnetic fields.
- Brehmstrahlung (Free-Free) radiation produced by the deceleration of (typically) an electron when deflected by the presence of hot gas
- coherent radio emission from pulsars (and other sources?)
- atomic and molecular transitions from various celestial objects

We will focus on the 21cm (1420 MHz) line of Neutral Hydrogen (HI)

Diffuse synchrotron radiation

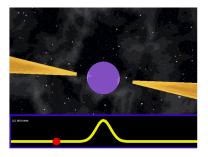
- Depends on B_{\perp} to the LOS modulated by the density of *cosmic electrons*
- CR power law energy density: $n(E) \sim E^{-p}$

Haslam Map @ 408 MHz


Diffuse polarised emission:

$$\begin{split} P &= Q + iU = \Pi_0(p)Ie^{2i\phi} \text{ with } \\ \phi &= \phi_0 + \psi\lambda^2 \text{ faraday rotation} \\ \text{given by } B_{\parallel} \text{ and the presence of } \\ thermal \ electrons \\ \psi \propto \int_{\text{LOS}} n_e B_{\parallel} dr \end{split}$$

 ψ important for studying magnetic fields


HI galaxies

- HI in galaxies more extended than the stellar content
- HI velocity fields can be used to calculate rotation curves and trace the total mass distribution to very large radii

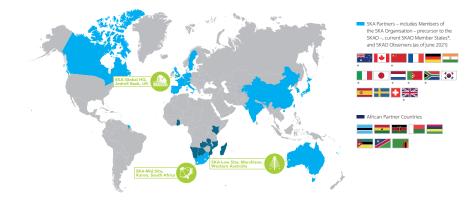
Pulsars

- highly magnetized rotating compact star (neutron stars/white dwarfs)
- almost Black Holes: mass of ~1.4 Solar Mass within 20km
- emits beams of electromagnetic radiation out of its magnetic poles
- cosmic lighthouses
- ranges from milliseconds to seconds
- precision GR tests

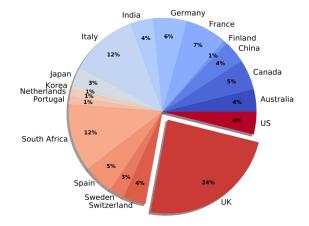
up to now more than 2.300 pulsars (nearly 300 ms ones)

SKAO project overview

THE TELESCOPES


The Square Kilometre Array (SKA) is made up of arrays of antennas - SKA-mid observing mid to high frequencies and SKAlow observing low frequencies - to be spread over long distances. The SKA is to be constructed in two phases: Phase 1 (called SKA1) in South Africa and Australia; with Phase 2 (called SKA2) representing a significant increase in capabilities and expanding into other African countries, with the component in Australia also being expanded.

SKA1-mid SKA1-low the SKA's mid-frequency instrument the SKA's low-frequency instrument <u>*</u># 197 dishes ~131.000 Frequency range Frequency range: 350 MHz 50 MHz 15.3 GHz 350 MHz with a goal of 24 GHz ocation: Australia Couth Africa 150km ~65km


SKAO project overview

SKA Partners (June 2021)

In proportion

Science goals

Cradle of Life

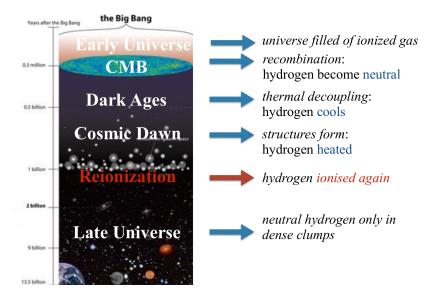
SKA will be able to detect extremely weak extraterrestrial radio signals (if they were to exist).

Cosmic Magnetism

Magnetic fields are invisible. Measure polarized synchrotron, Faraday rotation, Zeeman splitting

Tests of gravity

Pulsars to test general relativity in extreme conditions, for example, close to black holes.


Cosmic Dawn and Reionization

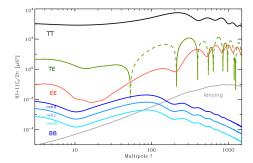
Through the redshifted 21cm line of Neutral Hydrogen we can probe the evolution of the universe down up to the Cosmic Dawn

Cosmology

study Dark Matter and Dark Energy both using the 21cm line, radio weak lensing and radio continuum survey

Brief history of Hydrogen

Recombination


Generalities on CMB:

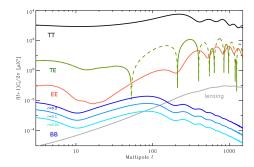
- A black body radiation at 2.7 K
- Temperature anisotropies of the order of 10^{-5}
- Power spectrum:

 $\Delta T(\hat{\mathbf{n}}) = \sum_{\ell m} a_{\ell m} Y_{\ell m}(\hat{\mathbf{n}})$

 $\begin{aligned} a_{\ell m} &\sim N(0,\sigma^2) \\ \text{with } \sigma^2 &= C_\ell^{TT} \end{aligned}$

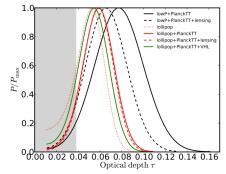
• Linear polarisation generated by Thompson scattering in presence of a quadrupolar structure

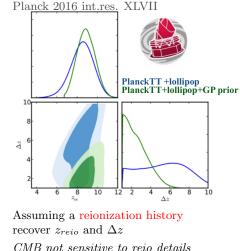
Stokes I,Q,U \rightarrow T,E,B


Recombination and Reionization

e.g Kosowsky (1996),Zaldarriaga & Seljak (1997)

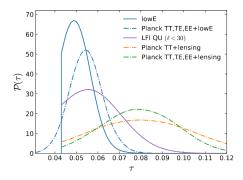
Reionization effects on CMB:


- CMB photons diffuse on "newly" free electrons and anisotropies are suppressed on small scales
- quadrupolar structure (originating polarisation at recombination) reprocessed at reionization


$$\ell_{obs}^{reio}\sim \sqrt{z_{reio}}$$

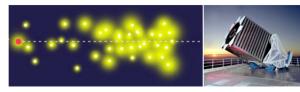
CMB constraints

- characterise reionization via Thompson scattering optical depth $\tau = \int_{t(z)}^{t_0} n_e \sigma_T c dt'$
- use low-ℓ polarization and high-ℓ temperature spectra



20 / 30

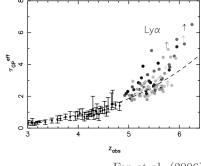
Planck 2018 constraints


- TT, TE, EE and low EE $\tau = 0.0544^{+0.0070}_{-0.0081}$
- reionization late and fast
- Universe is substantially neutral at redshift $z \gtrsim 7.5$
- low τ value makes constraints (almost) model independent

Planck 2018

Observational evidences of Reionization

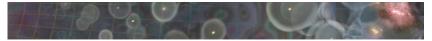
e.g. Zarubi (2013)



SDSS (e.g)

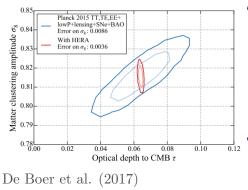
• emission from distant Quasars absorbed by neutral hydrogen clouds (Gunn–Peterson effect)

Ouasar


- Lyman Alpha absorption prop to x_{HI}: hydrogen highly ionised in the late universe
- Precise quasar spectra show that after $z \sim 6$ the neutral fraction is higher

Still a long way to go...

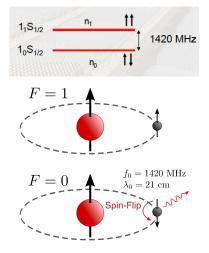
Observational evidences:


- CMB optical depth $\rightarrow \tau \sim 0.05 \ (z_{\rm reio} \sim 8)$
- Ly α forest absorbtion + Ly α emitters \rightarrow end around $z \sim 6$

Open questions:

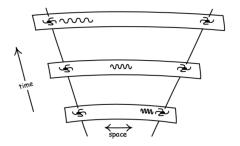
- When did the sources produce enough photons to ionise the Universe? $z \sim 20$ or $z \sim 6$?
- Nature of reionization? Sudden or gradual? homogeneous or inhomogeneous?
- What are the sources responsible? Stars, quasars, exotic particles?

Synergies (just an example)



- the constraints from Reio break the CMB degeneracy between the amplitude of density fluctuations σ₈ and the optical depth τ, improving constraints on both
- an external constraint on τ will help CMB constraints on lensing, neutrinos, and new physics

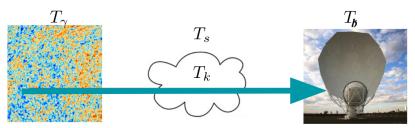
The 21cm line of Neutral Hydrogen


- ground state hyperfine transition
- lowest energy state: spins of the electron and the proton are antiparallel
- parallel spins: the atom has a tiny amount of extra energy
- if the level gets excited: atoms radiate photons with $\lambda = 21 \text{cm}$

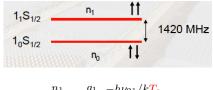
it occurs roughly every 10^6 y but there is a lot of HI!

Frequency and redshift for the 21cm line

$$z = \frac{(\nu_{\text{emitted}} - \nu_{\text{observed}})}{\nu_{\text{observed}}}$$
 with $\nu_{\text{emitted}} = 1420$ MHz



https://www.pitt.edu/~jdnorton/teaching/

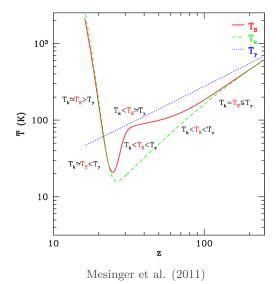

Examples:

- $\nu_{\text{observed}} \sim 900 \text{ MHz}$ corresponds to $z \sim 0.6$ (late Universe)
- $\nu_{\text{observed}} \sim 170 \text{ MHz}$ corresponds to $z \sim 7$ (EoR)
- $\nu_{\text{observed}} \sim 70 \text{ MHz}$ corresponds to $z \sim 20$ (Cosmic Dawn)

The 21cm probe

- 3 fundamental temperatures:
 - T_{γ} the CMB temperature
 - T_k the gas (IGM) temperature
 - T_s the spin temperature: sets the population of the hyperfine level with respect to the ground state

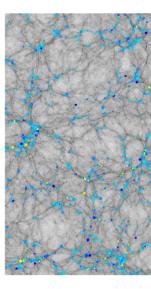
$$\frac{n_1}{n_0} = \frac{g_1}{g_0} e^{-h\nu_{21}/kT_s}$$


21cm signal

Mesinger, Greig & Sobacchi (2016)

$$\delta T_b \propto x_{HI} (1+\delta) (1-\frac{T_{\gamma}}{T_s}) \text{ mK}$$

 $T_k < T_s \lesssim T_\gamma$


$21 \mathrm{cm}$ signal

29 / 30

And after Reionization?

- Reionization process is complete, but there is neutral hydrogen left in dense clumps that protected it from UV radiation
- the presence of cold gas traces the distribution of dark matter, i.e. a bias tracers
- observing at different frequencies, we observe at different redshift ⇒ tomography ⇒ evolution of structures ⇒ dark energy

