Cosmology with the Square Kilometre Array

Marta Spinelli

Part Four

The planned (phase 1) surveys and their potential

Acknowledgments & References

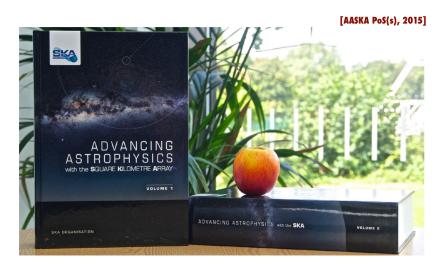
The content of these slides is inspired by various lectures given by different experts in SKA Cosmology.

I would like to thank for letting me steal here and there:

Phil Bull (QMUL), Stefano Camera (UniTo), Alkistis Pourtsidou (Edinburgh), Laura Wolz (UNIMAN)

SKA specific material can be found at: https://www.skatelescope.org or https://www.skaobservatory.org/.

See also: Advancing Astrophysics with the Square Kilometre Array,


https://pos.sissa.it/215/

The SKA telescope: recap

- SKA-MID
 - a dish array in South Africa
 - 133 15m dishes
 - Band 1: 350-1050 MHz $\Rightarrow 0.35 < z < 3$ (MeerKAT UHF band only down to 580 MHz)
 - Band 2: 950-1075 MHz $\Rightarrow 0 < z < 0.5$ (similar to MeerKAT L band)
- SKA-LOW: array of dipole antennas in Australia
 512 (224 core) stations with
 256 dipoles
 350 MHz down to 50 MHz

SKA Science

SKA Cosmology

Publications of the Astronomical Society of Australia (2020), 37, e007, 31 pages doi:10.1017/pasa.2019.51

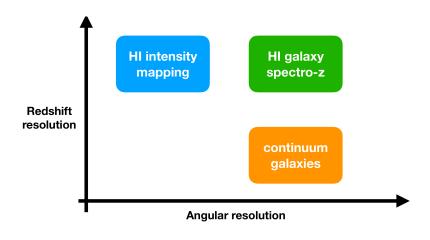
Research Paper

Cosmology with Phase 1 of the Square Kilometre Array Red Book 2018: Technical specifications and performance forecasts

Square Kilometre Array Cosmology Science Working Group: David J. Bacon ¹, Richard A. Battye ² , Philip Bull ³, Stefano Camera ^{2,4,5,6}, Pedro G. Ferreira ⁷, Ian Harrison ^{2,7}, David Parkinson ⁸, Alkistis Pourtsidou ³, Mário G. Santos ^{9,10,11}, Laura Wolz ¹², Filipe Abdalla ^{13,14}, Yashar Akrami ^{15,16}, David Alonso ⁷, Sambatra Andrianomena ^{9,10,17}, Mario Ballardini ^{9,18}, José Luis Bernal ^{19,20}, Daniele Bertacca ^{21,22}, Carlos A. P. Bengaly ⁹, Anna Bonaldi ²³, Camille Bonvin ²⁴, Michael L. Brown ², Emma Chapman ²⁵, Song Chen ⁹, Xuelei Chen ²⁶, Steven Cunnington ¹, Tamara M. Davis ²⁷, Clive Dickinson ², José Fonseca ^{9,22}, Keith Grainge ², Stuart Harper ², Matt J. Jarvis ^{7,9}, Roy Maartens ^{1,9}, Natasha Maddox ²⁸, Hamsa Padmanabhan ²⁹, Jonathan R. Pritchard ²⁵, Alvise Raccanelli ¹⁹, Marzia Rivi ^{13,18}, Sambit Roychowdhury ², Martin Sahlén ³⁰, Dominik J. Schwarz ³¹, Thilo M. Siewert ³¹, Matteo Viel ³², Francisco Villaescusa-Navarro ³³, Yidong Xu ²⁶, Daisuke Yamauchi ³⁴ and Joe Zuntz ³⁵

Standard model extensions

focusing on where SKA can have an impact


- massive neutrinos parametrized with the sum of the masses $M_{\nu} = \sum m_{\nu}$
- modification of the dark sector equation of state $P/\rho = w(a) = w_0 + (1-a)w_a$ (Chevallier & Polarski 2001)
- warm dark matter paradigm (m_{WDM})
- Modify Gravity (μ_0, γ_0)
- Primordial non-Gaussianity $(f_{\rm NL})$
- Cosmic Dipole
- ..

Observables

- Continuum: mostly synchrotron emission from galaxies
- 21cm line emission: spectroscopic galaxy redshift survey and intenisty mapping

Observables

- Continuum: mostly synchrotron emission from galaxies continuum galaxies (and weak lensing)
- 21cm line emission: spectroscopic galaxy redshift survey and intenisty mapping HI galaxy spectro-z HI intensity mapping

courtesy of Isabella Carucci

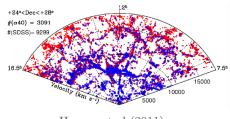
Proposed Cosmological Surveys

Medium Deep Band 2 with SKA-MID

5000 deg² and 10.000 h integration time continuum weak leaning survey and HI galaxy survey out to $z \sim 0.4$

Wide Band 1 with SKA-MID

20000 deg² and 10.000 h integration time continuum galaxy survey and HI Intensity Mapping out to $z\sim3$

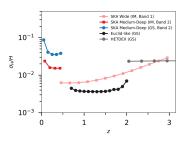

Deep SKA-LOW

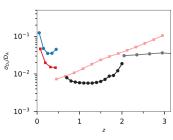
 $100~{\rm deg^2}$ and $5.000~{\rm h}$ integration time following the EoR survey strategy up to the end of Reionization.

HI galaxies

Medium Deep - Band 2 - 21cm line


- Detection in Band 1 very difficult for cosmology (not for galaxy evolution)
- subset: 21cm line width (Tully-Fisher) and angular size (Doppler magnification)
- all HI galaxies also continuum (commensality)


Haynes et al (2011)

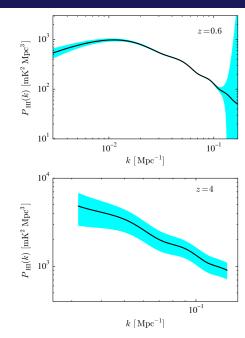

3D galaxy clustering \Rightarrow BAO and RSD in 2-point correlation function

Baryon Acoustic Oscillations

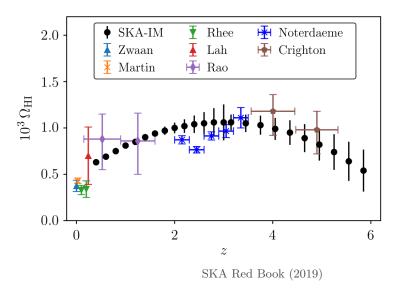
- radial BAO scale sensitive to the expansion rate, H(z)
- transverse BAO scale sensitive to the angular diameter distance, $D_A(z)$
- complementary to Euclid

SKA Red Book 2019

Intensity Mapping

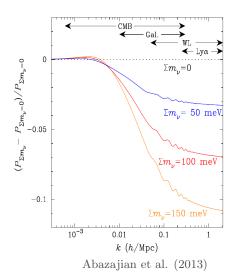

Medium Deep - Band 2 - 21cm line

Wide - Band 1 - 21cm line


Deep - LOW - 21cm line

$$P_{H\,I} \propto \Omega_{\rm HI}^2 \left[(b_{\rm HI} + f\mu^2)^2 P_m(z,k) + P_{\rm SN} \right]$$

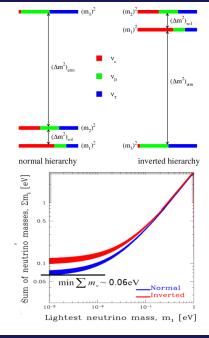
- BAO (as for plot previous slide)
- RSD (f(z) linear growth rateuseful to test alternative theory of gravity)


Intensity mapping

Neutrino mass effect on LSS

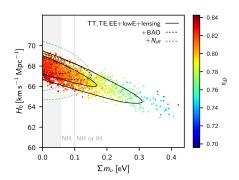
- oscillation exp: $M_{\nu} > 0$
- still relativistic at decoupling
- when non-rel contributes to structure formation
- transition from relativistic to non-relativistic $z \sim 2000 \frac{m_{\nu}}{1 \text{ eV}}$
- washes out structures with k bigger than $k_{\rm nr} \simeq 0.018 \sqrt{\Omega_m \frac{m_{\nu}}{\rm 1eV}} h/{\rm Mpc}$ Lesgourgues&Pastor (2006)

different probes, different scales



Hierarchy

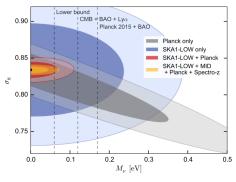
- solar neutrino experiments: disappearance of $\nu_e \Rightarrow \Delta m_{12}^2$ (>0)
- atmospheric neutrino experiments: disappearance of $\nu_{\mu} \Rightarrow |\Delta m_{23}^2|$


Which role for cosmology?

- Normal H: min $M_{\nu} \sim 0.06 \text{eV}$
- Inverted H: min $M_{\nu} \sim 0.10 \text{eV}$

Constraints from CMB

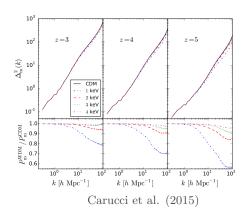
- $M_{\nu} < 0.26 \text{eV}$ (95%, Planck TT,TE,EE+lowE)
- $M_{\nu} < 0.12 \text{eV}$ (95%, Planck TT,TE,EE+lowE +lensing+BAO)
- higher M_{ν} increases H_0 tension and prefers lower σ_8
- IH under pressure


Planck 2018

SKA constraints on M_{ν}

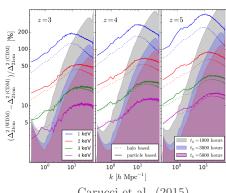
Deep - LOW - 21cm line

Band 1 - 21cm line


- SKA (both MID and LOW) not much improvement over Planck
- combination with Planck and spetro-z surveys breaks parameter degeneracies

Villaescusa-Navarro et al. (2015)

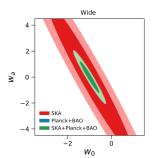
Warm Dark Matter

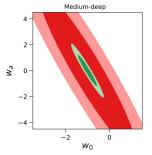

- WDM paradigm: DM particles have thermal velocities
- CDM preserved on large scales
- WDM can not cluster on scales smaller than its free streaming scale \Rightarrow small scale cut-off in $P_m(k)$
- suppression on the abundance of low-mass dark matter halos

SKA and Warm Dark Matter

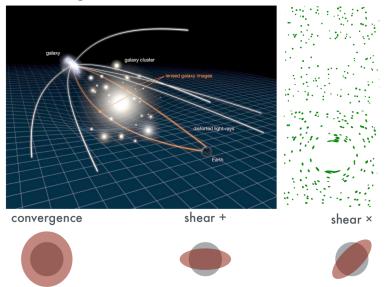
Deep - LOW - 21cm line

- naively expected a suppression of power
- increase of power at mildly non linear scales
- easier to see difference at higher redshift
- e.g. 1000h: 3keV can be ruled out at more than 2σ at z=5

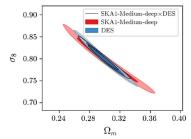

Carucci et al. (2015)

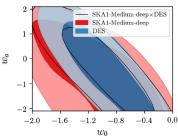

Continuum

Medium Deep - Band 2 - Continuum


Wide - Band 1 - Continuum

- SKA will detect million of galaxies of different types (e.g. SFG, FR1 & FR2, radio-quiet quasars)
- w0-wa constraint not much better than available ones but possible improvement with better knowledge of bias parameters for each population

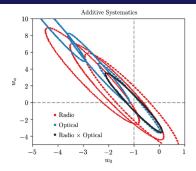

Weak lensing

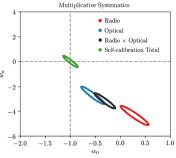


Radio Week Lensing

Medium Deep - Band 2 - Continuum

- statistical measurement of the shapes of millions of galaxies
- a marginal detection exist e.g. Chang, Refregier, & Helfand (2004)
- SKA comparable constraints with DES
- cross-correlation constraints retain almost all of the statistical power of the individual experiments


SKA Red Book (2019)


Cross-correlation

- complex shear at a given 3D position in the sky (θ, z)
- $\gamma_{\rm obs} = \gamma_{\rm sig} + \gamma_{\rm sys}$
- $\gamma_{\text{sys}}(\theta, z) = \gamma_{\text{mul}}(z)\gamma(\theta, z) + \gamma_{\text{add}}(\theta, z)$
- cross correlation remove additive sys
- self-calibration: different systematics, same cosmology

powerful argument for performing weak lensing in the radio band

Camera et al. (2017)

The end

If you have questions, if you need clarifications, if you have complains and/or suggestions, or if you think that SKA is your destiny :-) please do not hesitate to contact me spinemart@gmail.com or mspinelli@phys.ethz.ch

Thank to the Organizers for all the effort they put into this school and for letting me be part of it.

A last but not least thank to Laura Wolz that suggested my name for this.