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HOMOGENEOUS SCALAR FIELD DYNAMICS

In this subsection I will describe the theoretical basis for the phe-
nomenon of inflation. Consider a scalar field ¢, a singlet under any
given interaction, with an effective potential V' (¢). The Lagrangian
for such a field in a curved background is
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whose evolution equation in a Friedmann-Robertson-Walker metric and
for a homogeneous field ¢(t) is given by

¢+3Ho+V'(¢) =0, (2)
where H is the rate of expansion, together with the Einstein equations,
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where k> = 87G. The dynamics of inflation can be described as a
perfect fluid with a time dependent pressure and energy density given

by
1.
o= §¢2+V(<f>), (5)

p=3#-V(9). )

The field evolution equation (2) can then be written as the energy
conservation equation,

p+3H(p+p)=0. (7)
If the potential energy density dominates the kinetic energy;,

V(ig)>¢* = p~—p = po~const. =  H(¢p) ~ const.



which leads to the solution

a(t) ~exp(Ht) = %50 accelerated expansion . (8)
a

Using the definition of the number of e-folds, N = In(a/a;), we see that
the scale factor grows exponentially, a(IN') = a; exp(N). This solution
of the Einstein equations solves immediately the flatness problem. Re-
call that the problem with the radiation and matter eras is that {2 =1
(x = 0) is an unstable critical point in phase-space. However, during
inflation, with p ~ —p = w ~ —1, we have that 1 + 3w > 0 and
therefore x = 0 is a stable attractor of the equations of motion, see
Eq. (??7). As a consequence, what seemed an ad hoc initial condi-
tion, becomes a natural prediction of inflation. Suppose that during
inflation the scale factor increased N e-folds, then
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where we have assumed that inflation ended at the scale V.4, and the
transfer of the inflaton energy density to thermal radiation at reheating
occurred almost instantaneously! at the temperature T}, ~ Vei/( fl ~
1015 GeV. Note that we can now have initial conditions with a large
uncertainty, x;, ~ 1, and still have today zo ~ 1, thanks to the
inflationary attractor towards {2 = 1. This can be understood very

easily by realizing that the three curvature evolves during inflation as

=—=0Rrpe®™ — 0, for N>1. (9)

Therefore, if cosmological inflation lasted over 65 e-folds, as most mod-
els predict, then today the universe (or at least our local patch) should
be exactly flat, a prediction that has been tested with great (2%) accu-
racy by WMAP from observations of temperature anisotropies in the
microwave background.

IThere could be a small delay in thermalization, due to the intrinsic inefficiency of reheating, but this does
not change significantly the required number of e-folds.



Furthermore, inflation also solves the homogeneity problem in a spec-
tacular way. First of all, due to the superluminal expansion, any inho-
mogeneity existing prior to inflation will be washed out,
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S — 0, for N>1.  (10)

Moreover, since the scale factor grows exponentially, while the horizon
distance remains essentially constant, dy(t) ~ H ! = const., any scale
within the horizon during inflation will be stretched by the superlumi-
nal expansion to enormous distances, in such a way that at photon
decoupling all the causally disconnected regions that encompass our
present horizon actually come from a single region during inflation,
about 65 e-folds before the end. This is the reason why two points sep-
arated more than 1° in the sky have the same backbody temperature,
as observed by the COBE satellite: they were actually in causal con-
tact during inflation. There is at present no other proposal known that
could solve the homogeneity problem without invoquing an acausal
mechanism like inflation.



Finally, any relic particle species (relativistic or not) existing prior
to inflation will be diluted by the expansion,

pmox o ~ e 5 0, for N>, (11)
prR x at ~ e — 0, for N>1. (12)
Note that the vacuum energy density p, remains constant under the

expansion, and therefore, very soon it is the only energy density re-
maining to drive the expansion of the universe.



THE SLOW-ROLL APPROXIMATION

In order to simplify the evolution equations during inflation, we will
consider the slow-roll approximation (SRA). Suppose that, during in-
flation, the scalar field evolves very slowly down its effective potential,
then we can define the slow-roll parameters,
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[t is easy to see that the condition

e 2T 25 s (16)
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characterizes inflation: it is all you need for superluminal expansion,
i.e. for the horizon distance to grow more slowly than the scale factor,
in order to solve the homogeneity problem, as well as for the spatial
curvature to decay faster than usual, in order to solve the flatness
problem.

The number of e-folds during inflation can be written with the help
of Eq. (13) as
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{
which is an exact expression in terms of €(¢).

In the limit given by Eqs. (13), the evolution equations (2) and (3)



become

H2(1—§) ~ H? = %QV(@, (18)
3H (1-%) ~ 3HG = —V(&). (19)

Note that this corresponds to a reduction of the dimensionality of
phase-space from two to one dimensions, H (¢, ¢) — H(¢). In fact,
it is possible to prove a theorem, for single-field inflation, which states
that the slow-roll approximation is an attractor of the equations of
motion, and thus we can always evaluate the inflationary trajectory in
phase-space within the SRA, therefore reducing the number of initial
conditions to just one, the initial value of the scalar field. If H(¢) only
depends on ¢, then H'(¢) = —K2¢ /2 and we can rewrite the slow-roll
parameters (13) as
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These expressions define the new slow-roll parameters €y, ny and &y
The number of e-folds can also be rewritten in this approximation as

Pe d % V() d
N ~ / rdg — i (q,b) ¢7 (20)
oV 26V(¢) b v (¢)
a very useful expression for evaluating N for a given effective scalar
potential V(o).




GAUGE INVARIANT LINEAR PERTURBATION
THEORY

The unperturbed (background) FRW metric can be described by a
scale factor a(t) and a homogeneous density field p(t),

ds* = a*(n)[—dn* + v;; dz'dx’], (21)
. . dt

where 7 is the conformal time 7 = / T) and the background equa-

a

tions of motion can be written as

2

H? = aQHQ:Ean—K, (22)
27 K

H -H = a‘H:K—?QQ(erp), (23)

where H = aH.



The most general line element, in linear perturbation theory, with
both scalar, vector and tensor metric perturbations, is given by

ds® = aQ(n){—(1+2¢)d772+2(B|Z-—Si)dxidm— |:(1—2w>'7ij+2E|z'j+2F(i|j)+hij:| da'da?
(24)

The indices {7, j} label the three-dimensional spatial coordinates with

metric 7,5, and the |i denotes covariant derivative with respect to that

i =0

and the tensor perturbation h;; corresponds to a symmetric transverse

traceless gravitational wave, V'h;; = y“h;; = 0. In total, these corre-

spond to n(n+ 1)/2 = 10 independent degrees of freedom, 4 scalars, 2

vectors (3 components — 1 transverse condition each) and 2 tensor (6

metric. The vector perturbation is transverse v7.5;; = 7" F;

components — 3 transverse conditions — 1 trace condition).



GENERAL COORDINATE TRANSFORMATION,

Not all 10 degrees of freedom are physical. As we know, there is a
gauge invariance of the theory under general coordinate transforma-
tions. The homogeneity of the FRW space-time gives a natural choice
of coordinates in the absence of perturbations; however, the presence
of first-order perturbations allow a general coordinate (gauge) trans-
formation,

n=n+&nz"),

& = z* + 99 §;(n, 2°) + §(n, =),
(25)

with arbitrary scalar functions €° and €. The vector function £’ is a

transverse field, fﬁi = (. After this gauge transformation, &' deter-

ot — FH = gh 4 ¢H {

mines the choice of constant—n hypersurfaces, while € and €' select
the spatial coordinates within these hypersurfaces. The choice of co-
ordinates is arbitrary to first order and definitions of first-order metric
and matter perturbations are thus coordinate (gauge)-dependent. The



and matter perturbations are thus coordinate (gauge)-dependent. The
result of the gauge transformation (25) acting on any tensor @) is that of
the Lie derivative of the background value Q) of that physical quantity,

0Q = 6Q — £:Qq . (26)

Alternatively, we can obtain the transformed metric components by
perturbing the line element,

dn = dij — " dijy — &) di" (27)
da' = dii' — (¢, + &) diy — (€}, +€,)dT . (28)
Substituting them into the line element and using a(n) = a(n) —

a' (7)€", we get the line element in the new coordinate system, to first



order in metric and coordinate transformations,
as? = a*(@) { = (1+2(¢ = HE* — €") )i +2( (B — € — &) — (Si + &) ) dij d’
+ (1 200+ HE) i + 2B — s + 2( Fiy — G ) + g d'ade’ |

Since ds? = d3? is invariant under general coordinate transformations,
we can read off the transformation equations for the metric pertur-
bations by writing down the new line element with the new metric
perturbations as

o= aQ(ﬁ){—(1+2q§)dﬁ2—|—2(f3|2-—Si)dﬁd:%i+ [(1-2&) yij+2E|ij+2F(,i|j)+/3,ij] di'di’ }
(29)
Thus, the gauge transformation of scalar perturbations becomes
b=¢-HE-¢", B=B+&-¢, (30)

~

=1+ HE, E=E-¢, (31)



&
Thus, the gauge transformation of scalar perturbations becomes

b=¢-HE—¢", B=B+&-¢, (30)
=19+ HE, B=FE-§, (31)

that of vector perturbations is
Si=S;+¢&, (32)

and finally, tensor perturbations remain invariant

Alternatively, these metric transformations could have been obtained
from the general expression h,, = h,, — 0,§, — 9,§, for a coordinate
change (25).



SCALAR FIELD PERTURBED EQUATIONS

Consider the action (1) with line element
ds* = a(n)* [—(1 + 2®)dn* + (1 — 2d)dx’]

in the Longitudinal gauge, where ® is the gauge-invariant gravitational
potential (?7). Then the gauge-invariant equations for the perturba-
tions on comoving hypersurfaces (constant energy density hypersur-

faces) are
2
'+ IHY + (W + 2H)D = (356 — a?V'(9)d0),
2
~V20 + SHE' + (H + 2H)D = —Z (666 + a*V'(¢)d],

/ o "“32 /
Y+ HE = =456,

6¢" +2HOY — V26 +a*V"(9)0p = 4¢'D — 2a°V'(4)D.



This system of equations seem too difficult to solve at first sight.
However, there is a gauge invariant combination of Mukhanov variables

uUu=adp+ 20,
¢/
Z2=a—.
H
for which the above equations simplify enormously,
1
Z
u'—Vu—"u=0,
Z
2
k*H
V2® = ——(2u' — 2'u)
2 a? ’

(a2<1> "R2
— ) = —zu.
7) -

From these, we can find a solution u(z), which can be integrated to

give d(z), and together allow us to obtain d¢(z).



CANONICAL QUANTIZATION IN PERTUR-
BATION THEORY

Until now we have treated the perturbations as classical, but we should
in fact consider the perturbations ® and d0¢ as quantum fields. Note
that the perturbed action for the scalar mode u can be written as
1 Z”
05 = 5 / d>x dn [(u')2 — (Vu)? + —uQ} . (37)
2
In order to quantize the field u in the curved background defined by
the metric (21), we can write the operator
. d°k o oA s
itnx) = [ o [wmae™ +amale ™), @9
(2m)
where the creation and annihilation operators satisfy the commutation
relation of bosonic fields, and the scalar field’s Fock space is defined
through the vacuum condition,

a, af)] = (k- k), (39)
ax0) = 0. (40)




Note that we are not assuming that the inflaton is a fundamental scalar
field, but that is can be written as a quantum field with its commutation
relations (as much as a pion can be described as a quantum field at
low energies).

If we impose the equal-time commutation relations on the fields
themselves,
A 3 / -3 o3 /
[U(?], X)7 Hu(”? X )] = tho (X — X ) )
we find a normalization condition on the modes u;
upup — W up =14, (41)

that coincides with the Wronskian of the mode equation,
1

i (k2 . %)uk —0. (42)



Note that the modes decouple in linear perturbation theory. The
ratio U(n) = 2"/z acts like a time-dependent potential for this 1D
Schrodinger like equation (with time <> space),

—ul +U(n) up = k% uy .

In order to find exact solutions to the mode equation, we will use the
slow-roll parameters (13),

HI IiQZQ
621—H2=2a2, (43)
5:1-%@:1%—%, (44)
/1
g:—(2—6—35+52—,$¢,>. (45)

In terms of these parameters, the conformal time and the effective
potential for the u; mode can be written as
—1 eda -1 1

77:?4_ aH -~ Hi1-¢
=1+ e—0)2-0)+H (€ -] =~ _2(1/2__),




Note that the slow-roll parameters, (43) and (44), can be taken as
constant,® to order O(€?),

¢ =IaH (62 — 65) =i )

(46)
5 =H (65 _ g) — 0(&2).
In that case, for constant slow-roll parameters, we can write
—1 1

= 47

S | 1 1 —0 1
i —2<1/2 - —) : where v = e +—. (48)

g B 1 —¢ 2

2For instance, there are models of inflation, like power-law inflation, a(t) ~ tP, where e = § = 1/p < 1, that
give constant slow-roll parameters.



EXACT SOLUTIONS

We are now going to search for approximate solutions of the mode equa-
tion (42), where the effective potential (46) is of order 2”/z ~ 2H? in
the slow-roll approximation. In quasi-de Sitter there is a characteristic
scale given by the (event) horizon size or Hubble scale during infla-
tion, H~!. There will be modes u;, with physical wavelengths much
smaller than this scale, k/a > H, that are well within the de Sit-
ter horizon and therefore do not feel the curvature of space-time. On
the other hand, there will be modes with physical wavelengths much
greater than the Hubble scale, k/a < H.

In these two asymptotic regimes, the solutions can be written as

1 "
Up = —— e~ ¥ k> aH, (49)

V2k
w=C4(k) 2 k< aH . (50)



In the limit &£ > aH the modes behave like ordinary quantum modes in
Minkowsky space-time, appropriately normalized, while in the opposite
limit, u/2z becomes constant on superhorizon scales. For approximately
constant slow-roll parameters one can find exact solutions to (42), with
the effective potential given by (48), that interpolate between the two
asymptotic solutions,

exact solution that connects the two regimes

W g Lyar
ug(n) = % e +2)% (—n) /2 I (—kn), (51)

where H."(z) is the Hankel function of the first kind

e.g. H?()l/)Q(x) = —e"\/2/mz(1+1i/x),

and v is given by (48) in terms of the slow-roll parameters. In the



limit kn — 0, the solution becomes

T3 I(v) by _ C) ¢k \E !
wl =T =2 (GE) @
Cl) = 23 Egu—e)"—% ~1 for 51, (53)

We can now compute ¢ and d¢ from the super-Hubble-scale mode
solution (50), for k < aH. Substituting into Eq. (36), we find

= (1—%/a2dn)+02ﬂ2, (54)
a a

0¢p  C Cy

g=a cn—g (59

The term proportional to C; corresponds to the growing mode solu-
tion, while that proportional to Cy corresponds to the decaying mode
solution, which can soon be ignored. These quantities are gauge in-
variant but evolve with time outside the horizon, during inflation, and
before entering again the horizon during the radiation or matter eras.



We would like to write an expression for a gauge invariant quantity
that is also constant for superhorizon modes. Fortunately, in the case
of adiabatic perturbations, there is such a quantity:

1 s u :
=0+ (¥ +HD)=—, (56)

which is constant, see Eq. (50), for £ < aH. In fact, this quantity
is identical, for superhorizon modes, to the

( is the gauge invariant curvature perturbation R,

on constant energy density hypersurfaces,

]
§:R0+€H—2V2<b. (57)



Using Eq. (35) we can write the evolution equation for ¢ = % as

c’_wv%bfvo

which confirms that ¢ is constant for (adiabatic) superhorizon modes,
k < aH, but fails for entropy or isocurvature perturbations.

Therefore, we can evaluate the Newtonian potential ®; when the
perturbation reenters the horizon during radiation /matter eras in terms
of the curvature perturbation R;. when it left the Hubble scale during
inflation,

e 2R diat] 3
W . radiation era

(I)k— 1——/2d77 Rk—: > Ki= s ’

o+

+ 3w 2R,  matter era.
(58)

These expressions will be of special importance later.



GRAVITATIONAL WAVE PERTURBATIONS

Let us now compute the tensor or gravitational wave metric perturba-
tions generated during inflation. The perturbed action for the tensor
mode can be written as

1 0 -
55 = 5 / Az dy (7, = (Vhy ], (59)

with the tensor field h;; considered as a quantum field,

" d’k :
hij(n,x) = / W > [hk n) eii(k, \) ay l'k'x+h.c.}, (60)

2—1.2

where e;;(k, \) are the two polarization tensors,

satisfying symmetric, transverse and traceless conditions
€i; = €ji, k"ie.ij = O7 € = O, (61)
eii(—k,A) = ek, A), Y ek A)el(k,A) =4, (62

A
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while the creation and annihilation operators satisfy the usual commu-
tation relation of bosonic fields, Eq. (39). We can now redefine our
gauge invariant tensor amplitude as

ok(n) = \/‘;ﬂ

which satisfies the following evolution equation, for each mode vy(n) is

hue(n) (63)

decoupled in linear perturbation theory;,

1

vl + (k:? o %)vk —0. (64)

The ratio a” /a acts like a time-dependent potential for this Schrodinger
like equation, analogous to the term z”/z for the scalar metric pertur-



bation. For constant slow-roll parameters, the potential becomes

a” € 1 1
O, 2(1__):_(2——) 65
1 1

— -y 66

p=7—-"*35 (66)
We can solve equation (64) in the two asymptotic regimes,
1
Vi = ﬁ G_ZM] k> aH, (67)
v = Cs(k)a k< aH. (68)

In the limit &£ > aH the modes behave like ordinary quantum modes in
Minkowsky space-time, appropriately normalized, while in the opposite
limit, the metric perturbation h; becomes constant on superhorizon
scales. For constant slow-roll parameters one can find exact solutions
to (64), with effective potential given by (65), that interpolate between
the two asymptotic solutions. These are identical to Eq. (51) except



the two asymptotic solutions. These are identical to Eq. (51) except

for the substitution v — p,

T g I\
) = T 8 () ).

where Hy(z) is the Hankel function of the first kind
In the limit k1 — 0, the solution becomes
C(w) ( k )%—ﬂ
V2k \aH '

| =

(69)

(70)

Since the mode hj becomes constant on superhorizon scales, we can

evaluate the tensor metric perturbation when it reentered during the

radiation or matter era directly in terms of its value during inflation.



SCALAR AND TENSOR POWER SPECTRA

Not only do we expect to measure the amplitude of the metric pertur-
bations generated during inflation and responsible for the anisotropies
in the CMB and density fluctuations in LSS, but we should also be
able to measure its power spectrum, or two-point correlation function
in Fourier space. Let us consider first the scalar metric perturbations
Ry, which enter the horizon at a = k/H. Its correlator is given by

X - |U1;|2 3 n _ Pr(k) 3 ¢3 /
(0|RLRy[0) = = 'k —k') = — (2m)° 6°(k — k'),
k;3 luk |2 52 H\2 k \3—2v k \ ns—1
= L2 () (L) e ()
Pr(k) 22 2 2¢ \27r alH o GE
where we have used i
Re=CG = ?k

and Eq. (52). This last equation determines the power spectrum in



and Eq. (52). This last equation determines the power spectrum in
terms of its amplitude at horizon-crossing,

P (&)=L H
20 WO e M]%
. amplitude and tilt,
_dInPgr(k) B (5 — 26)
n, —1= T = 35— =) - ~ 2ny — Gey, (71)

see Egs. (20), (20). Note from this equation that it is possible, in
principle, to obtain from inflation a scalar tilt which is either positive
(n > 1) or negative (n < 1). Furthermore, depending on the partic-
ular inflationary model, we can have significant departures from scale
imvariance.

Note that at horizon entry kn = —1, and thus we can alternatively



evaluate the tilt as
dInPr
dlnn

ne—1=—

(5—26

— —2H [(1—6)—(6_5)_1] S G

) e 277v—6EV .
(72)
and the running of the tilt

dng
dlZ' = —nH (25 + 862 — 1065) ~ %y + 24 — 16gyey,  (T3)

where we have used Eqgs. (46).

Let us consider now the tensor (gravitational wave) metric pertur-

hk:/{\/ﬁﬁ
a

which enter the horizon at a = k/H,

bation,

Py(k)
Amk3

i 5
> (OB} sl al0) = 4 = Jux[*6% (k — K') = (2m)? 8% (k — K'),

A

P =e (52) (o) =4 ()™




where we have used Eqs. (63) and (70). Therefore, the power spectrum
can be approximated by a power-law expression, with amplitude

H\2 16 H?
=8 () == 15
=% \or) T 7 M2
and tilt
dInP,(k) —2¢
= =g — A= ~ — 0
nr T 3—2u I 2ey < 0, (74)

which is always negative. In the slow-roll approximation, € < 1, the
tensor power spectrum is scale invariant.

Alternatively, we can evaluate the tensor tilt by

dInP, —2¢
= — = 92 [1— —1]2 ~ =2 7
L T | s s ()
and its running by
dnp
= = —nH (462 — 465) ~ 86%/ — 4nyey, (76)

where we have used Eqgs. (46).



Quantum to Classical



MASSLESS MINIMALLY COUPLED SCALAR FIELD FLUC-
TUATIONS

The fluctuations of a massless minimally-coupled scalar field ¢ during
inflation (quasi de Sitter) are quantum fields in a curved background.
We will redefine y(x,t) = a(t) d¢(x,t), whose action is
1 \ a/l

S = /d4x L(y,y) = §/d3xd77 [(3/)2 - (Vo) +—o*|, (1)
where primes denote derivatives w.r.t. conformal time n = [ dt/a(t) =
—1/(aH), with H the constant rate of expansion during inflation. Now
using the identity (y')% + %” y? = (y — %/y)2 - (%/ y?)’, which gives a
total derivative in the Lagrangian, we can define the conjugate momen-
tum as p = 3—5, =) — %/y, and write the corresponding Hamiltonian
as

1 /

a
H=py - Lyy) =3 p2+(Vy)2+25Py - (2)



d*x
W O(x,n)e
all the fields and momenta. Since the scalar field is assumed real, we
have: y(k,n) = y'(=k,n) and p(k,n) = p'(—k,n), and the Hamilto-

nian becomes

—1x-k

We can now Fourier transform: ®(k,n) = /

M= 5 [plicmp! O, m) + 1 0k, m) ', ) 3)
+ 2 (s s +ptensiien)| - @

As we will see later, it is the last term, proportional to a’/a, which is
responsible for squeezing.

The Euler-Lagrange equations for this field can be written in terms



of the field eigenmodes as a series of uncoupled oscillator equations,

a/

p=—i] ,H]Z—kzy—;p

/
/

. a
=] ,H]=p+gy-

)

/

>y (k,m)+ (k2 -

al/

—) y(k,n) = 0,

a

(5)

where we have used the commutation relation (A = 1)

y(k ), i, m)| = 6%k — ).

(6)



HEISENBERG PICTURE: THE FIELD OPERATORS

We can now treat each mode as a quantum oscillator, and introduce
the corresponding creation and annihilation operators:

a(ka 77) - §y(k7 77) + 1 ok p(k, 7]) ) (7)
df(—ken) = f5ulln) =i —=pllen). s)

which can be inverted to give

y(k7 77) - ﬁ

p(k,ﬂ) =r—al = [a(kv 77) —GT(—kﬂ?)] . (10)



The usual equal-time commutation relations for fields (A = 1 here
and throughout),

y(xm), P, )] =i’ (x—x), (1)

becomes a commutation relation for the creation and annihilation op-

erators,
k), ()| = 0% (k—K) = |a(k, ), al(K,n)| = *(k—K).
(12)
In terms of these operators, the Hamiltonian becomes:

1

Ho= = |k (alk,n)allen) +a(—kma(-km) (19
a

4% (ol ko) allion) — otk (k) | (19

[t is the last (non-diagonal) term which is responsible for squeezing.



The evolution equations, a’ = —ila. H|. can be written as
) 7) )

(k) —ik £ a(k) ]
(i) -2 3)(6) o

whose general solution is, in terms of the initial conditions a(k, 7)),

CL(k, 77) - ulx(”) a(ka 770) % Uk(n) aT(_ka 770) ) (16)
aT<_k7 77) - uz(n) CLT(—k, 770) + UZ(n) CL(k) 770) ) (17)
which correspond to a Bogoliubov transformation of the creation and

annihilation operators, and characterizes the time evolution of the sys-
tem of harmonic oscillators in the Heisenberg representation.

The commutation relation (12) is preserved under the unitary evo-
lution if

[we(m)|* = [ok(m)* = 1, (18)
which gives a normalization condition for these functions.



We can write the quantum fields y and p in terms of these as,

yk,n) = fA( )a(k, mo) + fi(n) a'(—k, m) , (19)
pk,n) = —i [gr(n)alk,m) — gi(n) a’(=k,mo)] ,  (20)
where the functions
fuln) = <= fus(n) + w3 21)
gr(n) = \/g luk(n) — vp(n)], (22)

are the field and momentum modes, respectively, satisfying the follow-
ing equations and initial conditions,

ff+<ﬁ—"—)fh—0 Jr(mo)
szi(ﬁ—“gﬁ), gr(10)

DO 7 Co

(23)

, (24)

as well as the Wronskian condition,

i(fife—fE =g fi+aifr=1. (25)



SQUEEZING PARAMETERS

Since we have two complex functions, fi. and g, plus a constraint (25),
we can write these in terms of three real functions in the standard
parametrization for squeezed states,

up(n) = e "% cosh rp(n), (26)
vp(n) = eRMF2%M) ginh r(n), (27)

where 7. is the squeezing parameter, ¢ the squeezing angle, and 6,
the phase.

We can also write its relation to the usual Bogoliubov formalism in
terms of the functions {ag, Bi},

Up = O e—ikn ) UZ‘. — ﬁk eikn ) (28)
which is useful for the adiabatic expansion, and allows one to write the

average number of particles and other quantities,
2

1
ng = |6k|2 = |vk|2 =T )gk — k fr| = sinh® ry, (29)
or = 2Re (a}Bre*™) = 2Re (u} v}) = cos2¢y, sinh2ry,,  (30)
7 = 2Im (o By em’") = 2Im (uy v;) = — sin 2¢, sinh 2r . (31)




We can invert these expressions to give (rg, @k, ¢r) as a function of
uy. and vy,

sinhry = \/ Rev? + Imvi,  coshry = \/ Reus + Imu? , (32)

Imuy ImviReu + ImuiRevy,
tanfy = — ,  tan2¢ = s (I
Reuy. ReviReur — ImugImuoy
We can now write Egs. (19) and (20) in terms of the initial values,

y(k,n) = \/—fAI k, o) \/7fk2 k,m), (34
pk,n) = \/ggm(n)p(k, o) + V2k gia(n) y(k,mo) . (35)

where subindices 1 and 2 correspond to real and imaginary parts, fr1 =
Re fi and fro = Im f;, and similarly for the momentum mode gj.



THE SQUEEZING FORMALISM

Let us now use the squeezing formalism to describe the evolution of the
wave function. The equations of motion for the squeezing parameters

follow from those of the field and momentum modes,
/

o= = cos2y, (36)
a
/4
¢, = —k— © coth 27y, sin 2¢y, , 50
a
/
0. = k+ il tanh 2r;. sin 20y, . (38)
a

As we will see, the evolution is driven towards large . oc NV > 1, the
number of e-folds during inflation. Thus, in that limit,

A 2 '
(O + o1) = ol O = 50
a sinh 2ry.

and therefore 0. + ¢ — const. We can always choose this constant



and therefore 0, + ¢ — const. We can always choose this constant
to be zero, so that the real and imaginary components of the field and
momentum modes become

1 1
oy = e'k cos ¢y, , —
[ o o Jro Ton

b G
gkl = \/; ek cos ¢y, gr2 = \/; e’k sin ¢y, . (40)

[t is clear that, in the limit of large squeezing (rp, — o0), the field

ek sin ¢y, (39)

mode fi becomes purely real, while the momentum mode g;. becomes
pure imaginary.

This means that the field (34) and momentum (35) operators be-
come, in that limit,

:&(ka 77) — 2k fkl(77) yA(ka 770)

p(k,n) — V2k gra(n) (K, 10)

}imm2ﬁ$mm.
(41)



As a consequence of this squeezing, information about the initial mo-
mentum py distribution is lost, and the positions (or field amplitudes)
at different times commute,

[?)(k7771)7 ?)(kﬂ?z)] 2%

This result defines what is known as a quantum non-demolition (QND)
variable, which means that one can perform succesive measurements
of this variable with arbitrary precision without modifying the wave
function. Note that y = ad¢ is the amplitude of fluctuations produced
during inflation, so what we have found is: first, that the amplitude is
distributed as a classical Gaussian random field with probability (47);
and second that we can measure its amplitude at any time, and as
much as we like, without modifying the distribution function.

e %k cos® ¢y, = 0. (42)



In a sense, this problem is similar to that of a free non-relativistic
quantum particle, described initially by a minimum wave packet, with
initial expectation values (z)o = z¢ and (p)o = pp, which becomes
broader by its unitary evolution, and at late times (¢ > maxy/pg) this
(Gaussian state becomes an exact WKBDB state,

U(x) = Q;/Q exp(—Qz2/2),

pl ~ 0,
and we have lost information about the initial position z (instead of

1,

(
the initial momentum like in the inflationary case), 2(t) >~ p(t) t/m =
pot/m and p(t) = po. Therefore, not only [p(t1), p(ta)] = 0, but
also, at late times, [2(¢1), Z(?2)] = 0. This explains why we can make
subsequent measurements of a particle’s position and momentum in a
particle physics detector (e.g. a bubble chamber) and still retain all its
quantum properties like spin, etc.

with Tm€2 > Re(2 (i.e. high squeezing limit). In that limit,



THE SCHRODINGER PICTURE: THE VACUUM WAVE
FUNCTION

Let us go now from the Heisenger to the Schrodinger picture, and
compute the initial state vacuum eigenfunction Wo(n = 19). The initial
vacuum state |0, 1) is defined through the condition

k 1
Vk , a(k, 0, = \ﬁ +i—p 0, ==
( 770)| 770> [ 5 yk(ﬁo) \/ﬁpk(m)] | 770>

1 @ 2 % 102
|:y2 w % 83/0*] Vo (y27 Uh 7770) =0 = ¥ (yl(37 7 7770) = Ny e Flul
ke

where we have used the position representation, gx(n0) =y}, px(n0) =

—1 860*7 and Ny gives the corresponding normalization.
Yk




We will now study the time evolution of this initial wave function
using the unitary evolution operator S = S(n, 1), i.e. the state evolves
in the Schrodinger picture as |0, 1) = S0, 19). Now, inverting (19) and

(20)
a(k,mo) = gr(n) y(k,n) + ¢ fr(n) p(k,n) ,
which, acting on the initial state becomes, Vk , Vn,

. if;?(n) ” =i _
s [y<k,n> +i n>] 51510, ) = 0

. [@kmo) & ﬂgi ﬁk(ﬂo)] 0,m) =0,

L —omp

= W (k') = = |

Quln) = ge(n) _, wp— v _ 1 —2iFi(n)
| i) wp o 2P

1

Fi.(n) = Im(f; gr) = Im(ug vg) = 5 sin 2¢y, sinh 27y, .

(43)



We see that the unitary evolution preserves the Gaussian form of the
wave functional. The wave function (44) is called a 2-mode squeezed
state.

The normalized probability distribution,

~ Tl 0L

is a Gaussian distribution, with dispersion given by | fx|*.

Po (y(k, m), y(—k,m0), ) 177”2 exp (—'y(k’ ol ) -

In fact, we can compute the vacum expectation values,

(Ay(k,n) Ayt (K, ) = Ay’ (k) (k= K) = | i 8 (k — K), (48)
(Ap(k, ) Ap'(K',n)) = Ap(k) °(k — K') = |gi[* 6°(k — K') , (49)

and therefore the Heisenberg uncertainty principle reads
Ay*(k) Ap(k) = | fil® |gr” = FE(n) +

> (50)

= =

1
4
It is clear that for n = ny, Qk(no) = k and Fi(ny) = 0, and thus we
have initially a minimum wave packet, Ay Ap = % However, through
its unitary evolution, the function Fj, grows exponentially, see (46), and
we quickly find Ay Ap > %’ corresponding to the semiclassical regime,

as we will soon demonstrate rigorously.



THE WIGNER FUNCTION

The Wigner function is the best candidate for a probability density
of a quantum mechanical system in phase-space. Of course, we know
from QM that such a probability distribution function cannot exist,
but the Wigner function is just a good approximation to that distribu-
tion. Furthermore, for a Gaussian state, this function is in fact positive
definite.

Consider a quantum state described by a density matrix p. Then
the Wigner function can be written as
dxq dxg )
. r1+p2x
Wy, yi P pi ) // SRl <y——

7)
5 2>77~

[f we substitute for the state our vacuum initial condition p = |Wg) (W],
with Wy given by (44), we can perform the integration explicitly to
obtain

F




, , 1 ly|? F. |7
Wo(ye, v PooPr) = E‘Xp( TAE 2 Y
= O(y1, p1) D(yo, po2) (51)
3y, p1) = ~ exp{— (L 14 fiP R (52)
y17p1 T - d p If |2 ) J
e A
1 = N
|fA|2

In general, W, describes an asymmetric Gaussian in phase space,
whose 20 contours satisfy

2

For instance, at time 7 = 7y, we have y} = \/LQT = |fx(mo)|, P =

\/g = 1/2|fr(mo)], and Fk(no) = 0, so that p{ = p}, and the 20



contours become

2 2
Yq P1

which is a circle in phase space.

On the other hand, for time 1 > ny, we have

I
| fe] — o et~ gydel growing mode, (54)
1 - 0 _N
A e T decaying mode, 5D
AR T V2SR )

so that the ellipse (53) becomes highly “squeezed”.

Note that Liouville’s theorem implies that the volume of phase space
is conserved under Hamiltonian (unitary) evolution, so that the area
within the ellipse should be conserved. As the probability distribution
compresses (squeezes) along the p-direction, it expands along the y-
direction. At late times, the Wigner function is highly concentrated



direction. At late times, the Wigner function is highly concentrated
around the region

2 (g 2< L e« (56)
R AT B TAC ' :

We can thus take the above squeezing limit in the Wigner function
(51) and write the exponential term as a Dirac delta function,

rpr—oo 1 y : FA ®
Wo(y,p) — 50 {—||le|2} 0 <P — Wy) : (57)
In this limit we have
. e gr2(n) .
() = 220 00 (59

pk(n)zwyw o fm(??)y

so we recover the previous result (41). This explains why we can treat
the system as a classical Gaussian random field: the amplitude of the



field y is uncertain with probability distribution (47), but once a mea-
surement of y is performed, we can automatically asign to it a definite
value of the momentum, according to (41).

Note that the condition F ,? > 1 is actually a condition between
operators and their commutators/anticommutators. The Heisenberg
uncertainty principle states that

1
AvA LGB 2 5 (W[4, B]I)),

for any two hermitian operators (observables) in the Hilbert space of
the wave function W. In our case, and in Fourier space, this corresponds

o (50)
Ay () () = F2 () + 7 2 7 [(lletn, oy (59)

with [W) = |0, ) the evolved wave function.



On the other hand, the phase Fj, can be written as

. * * LGk .2 2 i
B =l B g — — [ — a2 =
k 2<gk.fk fr9r) 5 (fk | fil” — | fil "_‘)
1

= 5 (Ulp(k,n) y'(k, m) + y(k,n) p'(k, n)| D), (60)
and we have used that, in the semiclassical limit, we can write
(Ullye(m)P1T) = |fl?, as well as p(k, n) = —i £ y(k,n), see (41).

The above relation just indicates that, for any state W, the condition
of classicality (F} > 1) is satisfied whenever, for that state,

{yem), LM} > |lye(n), pLm)]| = &,

which is an interesting condition.



MASSLESS SCALAR FIELD FLUCTUATIONS ON SUPER-
HORIZON SCALES

The gauge invariant tensor fluctuations (gravitational waves) act as
a minimally-coupled massless scalar field during inflation, so we will
study here the generation of its fluctuations during quasi de Sitter.

Let us consider here the exact solutions to the equation of motion of
a minimally-coupled massless scalar field during inflation or quasi de
Sitter, with scale factor a = —1/Hn,

fr = Le—ikn (1 _L) 7 (61)

, a’ K 5
g = 1 (f/f-—gfk) = \/;e il (62)

which satisty the Wronskian condition, g f7* + g5 fr = 1. The eigen-
modes become



which satisfy the Wronskian condition, g f7* + g5 fr = 1. The eigen-
modes become

up = e (1 — %) — e~h1=1% coshry, (63)
vy = e ﬁ = '*1+3 ginhry, (64)

which comparing with (26) and (27) provides the squeezing parameter,
the angle and the phase, as inflation proceeds towards kn — 07,

inhr, =tandy = — — — 65

sinh . = tan 6 o eo (65)

T L L W | U pROTR BT

= arctan— — —— .= — — —arctan— — —
b= odkn 20 ET LY ok 2
while the imaginary part of the phase of the wave function becomes
1 1
Frlm= 5 sin 2¢y, sinh 2ry, = e — —00. (67)



The number of scalar field particles produced during inflation grow
exponentially, ny = |Bx|*> = sinh? rp = (2kn) 2 — oo.

Thus, through unitary evolution, the fluctuations will very soon enter
the semiclasical regime due to a highly squeezed wave function. The
question which remains is when do fluctuations become classical?



HUBBLE CROSSING

As we will see, the field fluctuation modes will become semiclassical
as their wavelength becomes larger than the only physical scale in the
problem, the de Sitter horizon scale, A\pyys = 2ma/k > H z

Therefore, let us consider the general solution to Eq. (23) for the
superhorizon modes (k < aH),

dn’ - i
2] C1(k) Cy(k) (68)

a’H
We can always choose C}(k) to be real, while Cy(k) will be complex
in general. The first term corresponds to the growing mode, while the

i) = Ciba+ Calbya [

second term is the decaying mode.



Integrating out g, from (24), one finds

1 1

| | : | k?
gi(n) = i Co(k) — — 1 C1(k) k” ~

2 : g
/ a dn:ZCQ(k)E—?,Cl<k)ﬁ,
(69)
where we have added a k? term for completeness. To second order in
k?, the Wronskian becomes
k?
a’H?

Ci (k) ImCy (k) (1 T ) ST )= —%. (70)

Comparing with the exact solutions (61), we find, to first order,

H; i k3/2

Cl(k):\/Tk?)a CQ(k):—\/?Hk_7

where Hj is the Hubble rate at horizon crossing, kn = —1, i.e. when
the perturbation’s physical wavelength becomes of the same order as
the de Sitter horizon size, k = aH = H.

(71)



We are now prepared to answer the question of classicality of the
modes. Let us compute the wave function phase shift

k2a

|Fx| = Im(fi gi)| = | Ci(k) -+ |Co (k)|

Py (72)

— Cy(k) ReCy(k) (1+ af;)‘ . (73)

Since only the first term remains after kn — 0, we see that |Fj| > 1
whenever

H H 2ma 2T
C%(k) = 2_161;3 > % = /\phys — T > )‘HC — E g (74>

Therefore, we confirm that modes that start as Minkowski vacuum well
inside the de Sitter horizon are stretched by the expansion and become
semiclassical soon after horizon crossing, and their amplitude can be
described as a classical Gaussian random variable.



Furthermore, the fact that the momentum is immediately defined
once the amplitude for a given wavelength is known, implies that
there is a fixed temporal phase coherence for all perturbations with
the same wavelength. As we know, this implies that inflationary per-
turbations will induce coherent acoustic oscillations in the plasma just
before decoupling, which should be seen in the microwave background
anisotropies as acoustic peaks in the angular power spectrum.












