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A necessary Disclaimer
Two main types of characters in the numerical cosmology business

“Hardcore” code 
developers 

• Very good at 
programming.


• Know every single detail 
of the code structure and 
workflow


• Could develop the whole 
code from scratch


• Have a deep 
understanding of the 
theoretical foundations of 
the numerical approach


• Focus on the accuracy 
and reliability of the code
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Outline
Cosmological Simulations: What, Why, and How? 

• What are Cosmological Simulations?

• Motivations and applications of creating synthetic universes

• The 3 main steps of cosmological simulations

• The (cosmological) N-body problem: gravitational dynamics of a 

collisionless system in an expanding space

• Before starting: initial conditions for cosmological simulations

• Solving gravity for a system of N particles: the PM method

• Solving gravity for a system of N particles: the Tree method

• Solving gravity for a system of N particles: the Multigrid method

• Time integration

mailto:marco.baldi5@unibo.it
mailto:marco.baldi5@unibo.it


Marco Baldi - Cosmological Simulations - marco.baldi5@unibo.it
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Cosmological Simulations: What, Why, and How? 

• What are Cosmological Simulations?

• Motivations and applications of creating synthetic universes

• The 3 main steps of cosmological simulations

• The (cosmological) N-body problem: gravitational dynamics of a 

collisionless system in an expanding space

• Before starting: initial conditions for cosmological simulations

• Solving gravity for a system of N particles: the PM method

• Solving gravity for a system of N particles: the Tree method

• Solving gravity for a system of N particles: the Multigrid method

• Time integration

Cosmological Simulations: What else? 
• Beyond LCDM cosmologies: motivations and classification

• Modifying N-body algorithms to include additional physics

• Dark Energy implementations

• Modified Gravity implementations: the example of f(R) 
• Dark Matter models: massive neutrinos et al.
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simulation [noun]
/ˌsɪmjuˈleɪʃn/ 
[countable, uncountable] a situation in which a particular set of conditions is created 
artificially in order to study or experience something that could exist in reality
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aimed at studying its real properties and evolution

The artificial replica should be as faithful as possible, but will 
necessarily be an approximation to reality, and a lower-resolution 
(lower-information) representation of it… 

What are Cosmological Simulations?

… otherwise you fall into one of Borges Paradoxes (J. L. Borges, “On 
the exactitude of Science”, 1946, inspired by Lewis Carroll’s Sylvie 
and Bruno, 1895)
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"What a useful thing a pocket-map is!" I remarked. 

"That's another thing we've learned from your Nation," said Mein Herr, "map-
making. But we've carried it much further than you. What do you consider the 
largest map that would be really useful?" 

"About six inches to the mile." 

"Only six inches!" exclaimed Mein Herr. "We very soon got to six yards to the mile. 
Then we tried a hundred yards to the mile. And then came the grandest idea of 
all ! We actually made a map of the country, on the scale of a mile to the mile!" 

"Have you used it much?" I enquired. 

"It has never been spread out, yet," said Mein Herr: "the farmers objected: they 
said it would cover the whole country, and shut out the sunlight ! So we now use 
the country itself, as its own map, and I assure you it does nearly as well." 

from Lewis Carroll, Sylvie and Bruno Concluded, Chapter XI, London, 1895 

What are Cosmological Simulations?
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Why
doing Cosmological Simulations?
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Why do we need Cosmological Simulations?
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Why do we need Cosmological Simulations?
1. To model the evolution of structures in the Universe into the 

non-linear regime not directly accessible with analytical tools
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2. To replace “experiments” that cannot be done by having full 
control of the physical system (i.e. the Universe)
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Why do we need Cosmological Simulations?
1. To model the evolution of structures in the Universe into the 

non-linear regime not directly accessible with analytical tools

2. To replace “experiments” that cannot be done by having full 
control of the physical system (i.e. the Universe)

3. To quantify statistical uncertainties (i.e. cosmic variance)

4. Allow to test the cosmological model by providing predictions 
for directly observable quantities (e.g. abundance of objects as 
a function of their mass, weak and strong gravitational lensing 
effects, large-scale density or velocity fields, morphology of 
individual objects and/or of the large-scale structures)

5. Allow to test extensions of the cosmological model and/or 
yet not properly understood physical processes (as e.g. in 
galaxy formation)

6. More motivations at the end…
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How
do Cosmological Simulations work?
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Cosmological Simulation —>  an artificial replica of the cosmos aimed 
at studying its real properties and evolution.

Let’s start by characterising the system we want to replicate: THE 
UNIVERSE !

Setting up the stage
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Cosmological Simulation —>  an artificial replica of the cosmos aimed 
at studying its real properties and evolution.

Let’s start by characterising the system we want to replicate: THE 
UNIVERSE !

Not an easy task as the Universe is:


- Very LARGE —> a fair (i.e. un-biased) replica should encompass a 
representative portion of the universe, which will contain a large 
number of degrees of freedom (i.e. the system is very COMPLEX)
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Cosmological Simulation —>  an artificial replica of the cosmos aimed 
at studying its real properties and evolution.

Let’s start by characterising the system we want to replicate: THE 
UNIVERSE !

Not an easy task as the Universe is:


- Very LARGE —> a fair (i.e. un-biased) replica should encompass a 
representative portion of the universe, which will contain a large 
number of degrees of freedom (i.e. the system is very COMPLEX)

- Very OLD —> replica should be evolved for a long time, i.e. 
approximations and numerical errors may propagate and 
accumulate (need for a way to control the accuracy of the 
simulation)


However, we can rely on some simplifying (yet reasonable) 
statements…

Setting up the stage
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Setting up the stage
- Cosmological Principle: the universe is homogeneous and 

isotropic over sufficiently large scales (at any time of its evolution)
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isotropic over sufficiently large scales (at any time of its evolution)

Millennium XXL, Angulo et al. 2009
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Setting up the stage
- Cosmological Principle: the universe is homogeneous and 

isotropic over sufficiently large scales (at any time of its evolution)

Good news! 

To simulate a fair sample of the 
Universe it is enough (with some 
caveats) to represent a volume 
larger than the homogeneity 
scale

Millennium XXL, Angulo et al. 2009
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Setting up the stage
- Cosmological Principle: the universe is homogeneous and 

isotropic over sufficiently large scales (at any time of its evolution)

Good news! 

To simulate a fair sample of the 
Universe it is enough (with some 
caveats) to represent a volume 
larger than the homogeneity 
scale

Millennium XXL, Angulo et al. 2009

Bad news! 

The homogeneity scale is quite 
large, a few hundred comoving 
Mpc
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- Gravity is the only non-negligible force acting on cosmologically-
relevant scales

Setting up the stage
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- Gravity is the only non-negligible force acting on cosmologically-
relevant scales

Setting up the stage

Good news! 
If we are interested in the evolution of the universe at large scales, 
and not in the details of what happens e.g. inside a galaxy cluster, 
then we can discard any other interaction and simulate the effects 
of gravity alone
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- Gravity is the only non-negligible force acting on cosmologically-
relevant scales

Setting up the stage

Good news! 
If we are interested in the evolution of the universe at large scales, 
and not in the details of what happens e.g. inside a galaxy cluster, 
then we can discard any other interaction and simulate the effects 
of gravity alone

Bad news! 
Gravity is a long-range non-screenable force… we will have to 
solve a global problem (where every part of the system interacts 
with any other part)
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- The evolution of inhomogeneities can be faithfully treated using 
analytical solutions (Perturbation Theory) as long as these 
inhomogeneities are small

Setting up the stage
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- The evolution of inhomogeneities can be faithfully treated using 
analytical solutions (Perturbation Theory) as long as these 
inhomogeneities are small

Setting up the stage

Good news! 
We can resort on analytical solutions to describe the system for at 
least a part of its very long evolution, thereby reducing as much as 
possible the accumulation of numerical errors
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inhomogeneities are small

Setting up the stage

Good news! 
We can resort on analytical solutions to describe the system for at 
least a part of its very long evolution, thereby reducing as much as 
possible the accumulation of numerical errors

No need to 
start 

simulation 
here
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- The evolution of inhomogeneities can be faithfully treated using 
analytical solutions (Perturbation Theory) as long as these 
inhomogeneities are small

Setting up the stage

Good news! 
We can resort on analytical solutions to describe the system for at 
least a part of its very long evolution, thereby reducing as much as 
possible the accumulation of numerical errors

No need to 
start 

simulation 
here
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Use 
observations 

here

To start 
simulation 

somewhere 
here
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- Observations show very small (<1e-05) inhomogeneities at early 
times (CMB) and very large (up to 1e+05) inhomogeneities at late 
times (LSS)

Setting up the stage
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- Observations show very small (<1e-05) inhomogeneities at early 
times (CMB) and very large (up to 1e+05) inhomogeneities at late 
times (LSS)
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- Observations show very small (<1e-05) inhomogeneities at early 
times (CMB) and very large (up to 1e+05) inhomogeneities at late 
times (LSS)

Setting up the stage

Primordial density field
zCMB ⇡ 103, aCMB ⇡ 10�3

�T/T ⇡ �⇢b/⇢b ⇡ 10�5

Structures in the present-day Universe
z0 = 0, a0 = 1

(�⇢/⇢)obs ⇡ 1

Well… 
at least we know what we require from our simulation techniques

gravity

evolve the density field of the Universe under the effect of gravity 
from the point where we can predict it analytically to today
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How?
Discretisation Approaches
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Discretisation approaches
To represent and evolve the 3D density field under its own self-gravity 
using numerical methods we first need to discretise the system.
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Discretisation approaches
To represent and evolve the 3D density field under its own self-gravity 
using numerical methods we first need to discretise the system.

Density field
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Discretisation approaches
To represent and evolve the 3D density field under its own self-gravity 
using numerical methods we first need to discretise the system.

Density field Density on a grid (mapping)

Two possible approaches:
1) Discretise space —> Eulerian methods
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Discretisation approaches
To represent and evolve the 3D density field under its own self-gravity 
using numerical methods we first need to discretise the system.

Density field

i.e. coarse-graining the field on a given set of space-filling 
volume elements

Density on a grid (mapping)

Two possible approaches:
1) Discretise space —> Eulerian methods
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Discretisation approaches

Density field

Two possible approaches:
2) Discretise mass —> Lagrangian methods —> N-body approach

To represent and evolve the 3D density field under its own self-gravity 
using numerical methods we first need to discretise the system.
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Discretisation approaches

Density field Particle distribution (sampling)

Two possible approaches:
2) Discretise mass —> Lagrangian methods —> N-body approach

To represent and evolve the 3D density field under its own self-gravity 
using numerical methods we first need to discretise the system.
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Discretisation approaches

Density field Particle distribution (sampling)

i.e. sampling the density through a set of discrete point-like tracers 
called “particles”, which carry a given mass and which have nothing 
to do (in general) with physical or fundamental particles

Two possible approaches:
2) Discretise mass —> Lagrangian methods —> N-body approach

To represent and evolve the 3D density field under its own self-gravity 
using numerical methods we first need to discretise the system.
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How?
Formalising the Problem
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Solving for the gravitational evolution of a system of N particles is a 
complex problem which cannot be addressed analytically for N > 2.

The gravitational N-body problem
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Solving for the gravitational evolution of a system of N particles is a 
complex problem which cannot be addressed analytically for N > 2.

The gravitational N-body problem

r̈i = �rr�(ri)

The numerical integration of an N-body system basically amounts to 
solving (for a set of subsequent time steps) the following system 
of ordinary differential equations:
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Solving for the gravitational evolution of a system of N particles is a 
complex problem which cannot be addressed analytically for N > 2.

The gravitational N-body problem

) {
u̇i = �rr�(ri)

ṙi = ui

r̈i = �rr�(ri)

The numerical integration of an N-body system basically amounts to 
solving (for a set of subsequent time steps) the following system 
of ordinary differential equations:
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Solving for the gravitational evolution of a system of N particles is a 
complex problem which cannot be addressed analytically for N > 2.

The gravitational N-body problem

) {
u̇i = �rr�(ri)

ṙi = ui

where the gravitational potential is given by Poisson’s equation:

r2
r� = 4⇡G⇢

r̈i = �rr�(ri)

The numerical integration of an N-body system basically amounts to 
solving (for a set of subsequent time steps) the following system 
of ordinary differential equations:
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For cosmological systems, one needs to take into account the 
expansion of space, so that it is convenient to work in comoving 
coordinates:

The cosmological N-body problem

r = ax
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For cosmological systems, one needs to take into account the 
expansion of space, so that it is convenient to work in comoving 
coordinates:

The cosmological N-body problem

r = ax
physical coordinate
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For cosmological systems, one needs to take into account the 
expansion of space, so that it is convenient to work in comoving 
coordinates:

The cosmological N-body problem

r = ax
comoving  coordinatephysical coordinate
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For cosmological systems, one needs to take into account the 
expansion of space, so that it is convenient to work in comoving 
coordinates:

The cosmological N-body problem

r = ax

u = ṙ = ȧx+ aẋ = H(t)r+ v

comoving  coordinatephysical coordinate
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For cosmological systems, one needs to take into account the 
expansion of space, so that it is convenient to work in comoving 
coordinates:

The cosmological N-body problem

r = ax

u = ṙ = ȧx+ aẋ = H(t)r+ v

comoving  coordinatephysical coordinate

physical velocity
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For cosmological systems, one needs to take into account the 
expansion of space, so that it is convenient to work in comoving 
coordinates:

The cosmological N-body problem

r = ax

u = ṙ = ȧx+ aẋ = H(t)r+ v

comoving  coordinatephysical coordinate

physical velocity peculiar velocity
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For cosmological systems, one needs to take into account the 
expansion of space, so that it is convenient to work in comoving 
coordinates:

The cosmological N-body problem

r = ax

u = ṙ = ȧx+ aẋ = H(t)r+ v

comoving  coordinatephysical coordinate

physical velocity peculiar velocity

This allows to rewrite the equation of motion and the Poisson equation 
as

�Where     is the peculiar potential and                    is the density contrast

v̇ = �H(t)v � 1

a
rx�

r2
x� = 4⇡G⇢̄a2�

� ⌘ �⇢/⇢̄
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For cosmological systems, one needs to take into account the 
expansion of space, so that it is convenient to work in comoving 
coordinates:

The cosmological N-body problem

r = ax

u = ṙ = ȧx+ aẋ = H(t)r+ v

comoving  coordinatephysical coordinate

physical velocity peculiar velocity

peculiar potential

This allows to rewrite the equation of motion and the Poisson equation 
as

�Where     is the peculiar potential and                    is the density contrast

v̇ = �H(t)v � 1

a
rx�

r2
x� = 4⇡G⇢̄a2�

� ⌘ �⇢/⇢̄
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For cosmological systems, one needs to take into account the 
expansion of space, so that it is convenient to work in comoving 
coordinates:

The cosmological N-body problem

r = ax

u = ṙ = ȧx+ aẋ = H(t)r+ v

comoving  coordinatephysical coordinate

physical velocity peculiar velocity

peculiar potential

density contrast

This allows to rewrite the equation of motion and the Poisson equation 
as

�Where     is the peculiar potential and                    is the density contrast

v̇ = �H(t)v � 1

a
rx�

r2
x� = 4⇡G⇢̄a2�

� ⌘ �⇢/⇢̄
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For cosmological systems, one needs to take into account the 
expansion of space, so that it is convenient to work in comoving 
coordinates:

The cosmological N-body problem

r = ax

u = ṙ = ȧx+ aẋ = H(t)r+ v

comoving  coordinatephysical coordinate

physical velocity peculiar velocity

peculiar potential

density contrast

This allows to rewrite the equation of motion and the Poisson equation 
as

�Where     is the peculiar potential and                    is the density contrast

v̇ = �H(t)v � 1

a
rx�

r2
x� = 4⇡G⇢̄a2�

� ⌘ �⇢/⇢̄

Hubble friction
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We therefore see that the motion of particles will be determined by the 
density fluctuations around the background average density that 
source the peculiar gravitational potential

The cosmological N-body problem

r2
x� = 4⇡G⇢̄a2�
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We therefore see that the motion of particles will be determined by the 
density fluctuations around the background average density that 
source the peculiar gravitational potential

The cosmological N-body problem

r2
x� = 4⇡G⇢̄a2�

H(t)v p ⌘ av = a2ẋ
The equation of motion can be further simplified to absorb the Hubble 
friction term               by introducing the variable 

ṗi = �rx�(xi)
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We therefore see that the motion of particles will be determined by the 
density fluctuations around the background average density that 
source the peculiar gravitational potential

The cosmological N-body problem

r2
x� = 4⇡G⇢̄a2�

where we now have to write the peculiar potential for a set of N point-
like massive particles:

�(xi) = �1

a

X

j 6=i

Gmj

|xi � xj |

H(t)v p ⌘ av = a2ẋ
The equation of motion can be further simplified to absorb the Hubble 
friction term               by introducing the variable 

ṗi = �rx�(xi)
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How?
The 3 main steps
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The steps of an N-body simulation
1. Initial Conditions:  

 
The gravitational N-body problem amounts to integrate a system 
of first order differential equations: 
 
 
 
 
We therefore need initial conditions for       and       for all the 
particles in the system 

x ẋ

ṗi = �rx�(xi)

ẋi = pi/a
2

mailto:marco.baldi5@unibo.it
mailto:marco.baldi5@unibo.it


Marco Baldi - Cosmological Simulations - marco.baldi5@unibo.it

2. Gravitational Solver  
 
It will be the core of our calculation, and requires to compute the 
source term for the acceleration equation for any given 
configuration of the particles’ distribution. 
In other words, it is the method to obtain the source term on the 
RHS of the differential equations: 
 
 
 
which requires computing the peculiar gravitational potential  
 
 
 
 
at every particle’s position

The steps of an N-body simulation

ṗi = �rx�(xi)

�(xi) = �1

a

X

j 6=i

Gmj

|xi � xj |
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3. Time integration 
 
Once the source term (i.e. the acceleration on all particles) has 
been computed, and the initial configuration of the system is 
known (particles’ positions and velocities at a given time) the 
dynamics must be integrated by moving the system forward in 
time, thereby updating positions and velocities of all particles:

The steps of an N-body simulation

x(t) ! x(t+�t)

p(t) ! p(t+�t)

mailto:marco.baldi5@unibo.it
mailto:marco.baldi5@unibo.it


Marco Baldi - Cosmological Simulations - marco.baldi5@unibo.it

How?
Setting up initial conditions
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Step 1: initial conditions
We want to set up initial positions and velocities of N particles in a 
periodic comoving box. We have seen that in comoving coordinates:
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Step 1: initial conditions
We want to set up initial positions and velocities of N particles in a 
periodic comoving box. We have seen that in comoving coordinates:

v̇ = �H(t)v � 1

a
rx� r2

x� = 4⇡G⇢̄a2�

Euler equation Poisson equation
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Step 1: initial conditions
We want to set up initial positions and velocities of N particles in a 
periodic comoving box. We have seen that in comoving coordinates:

We can rewrite also the continuity equation in comoving coordinates:

⇢̇+rr(⇢u) = 0 ! �̇ +
1

a
rxv = 0

v̇ = �H(t)v � 1

a
rx� r2

x� = 4⇡G⇢̄a2�

Euler equation Poisson equation
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Step 1: initial conditions
We want to set up initial positions and velocities of N particles in a 
periodic comoving box. We have seen that in comoving coordinates:

We can rewrite also the continuity equation in comoving coordinates:

⇢̇+rr(⇢u) = 0 ! �̇ +
1

a
rxv = 0

v̇ = �H(t)v � 1

a
rx� r2

x� = 4⇡G⇢̄a2�

Euler equation Poisson equation

These three equations can be combined into one second-order 
differential equation for the evolution of the density contrast:

�̈ + 2H �̇ = 4⇡G⇢̄� = 4⇡G
⇢̄0

a3
�
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Step 1: initial conditions
We want to set up initial positions and velocities of N particles in a 
periodic comoving box. We have seen that in comoving coordinates:

We can rewrite also the continuity equation in comoving coordinates:

⇢̇+rr(⇢u) = 0 ! �̇ +
1

a
rxv = 0

v̇ = �H(t)v � 1

a
rx� r2

x� = 4⇡G⇢̄a2�

Euler equation Poisson equation

These three equations can be combined into one second-order 
differential equation for the evolution of the density contrast:

�̈ + 2H �̇ = 4⇡G⇢̄� = 4⇡G
⇢̄0

a3
�

Which is solved by the growth function D(a) : �(a) = D(a)�0
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Step 1: initial conditions
We know that in matter domination D(a) ⇠ a
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Step 1: initial conditions
We know that in matter domination D(a) ⇠ a

We now decompose the density contrast field into Fourier waves:

�(x) =

Z
�k(k)e

�ik·xd3k

mailto:marco.baldi5@unibo.it
mailto:marco.baldi5@unibo.it


Marco Baldi - Cosmological Simulations - marco.baldi5@unibo.it

Step 1: initial conditions
We know that in matter domination D(a) ⇠ a

We now decompose the density contrast field into Fourier waves:

�(x) =

Z
�k(k)e

�ik·xd3k

so that the power spectrum of the field can be written as

P (k) =
⌦
|�k(k)|2

↵

�(a) = D(a)�0 ) P (k, a) = D2(a)P0(k)
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Step 1: initial conditions
We know that in matter domination D(a) ⇠ a

We now decompose the density contrast field into Fourier waves:

�(x) =

Z
�k(k)e

�ik·xd3k

so that the power spectrum of the field can be written as

P (k) =
⌦
|�k(k)|2

↵

�(a) = D(a)�0 ) P (k, a) = D2(a)P0(k)

All these derivations are valid only in the linear regime, i.e. when � ⌧ 1
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Step 1: initial conditions
We know that in matter domination D(a) ⇠ a

We now decompose the density contrast field into Fourier waves:

�(x) =

Z
�k(k)e

�ik·xd3k

so that the power spectrum of the field can be written as

P (k) =
⌦
|�k(k)|2

↵

�(a) = D(a)�0 ) P (k, a) = D2(a)P0(k)

All these derivations are valid only in the linear regime, i.e. when � ⌧ 1

For             this treatment breaks down (            would imply negative 
densities), but as long as              it provides a way to obtain       from 
observations (of           ). How? 

� > 1� ⇠ 1
� ⌧ 1 �

P (k)
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Step 1: initial conditions
We want to translate the temperature fluctuations observed in the 
CMB (well in the linear regime,              ) into initial conditions for 
particles’ positions and velocities.

� ⌧ 1
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Step 1: initial conditions
We want to translate the temperature fluctuations observed in the 
CMB (well in the linear regime,              ) into initial conditions for 
particles’ positions and velocities.

� ⌧ 1

mailto:marco.baldi5@unibo.it
mailto:marco.baldi5@unibo.it


Marco Baldi - Cosmological Simulations - marco.baldi5@unibo.it

Step 1: initial conditions
We want to translate the temperature fluctuations observed in the 
CMB (well in the linear regime,              ) into initial conditions for 
particles’ positions and velocities.

� ⌧ 1

Observations

Plots: Planck Collaboration
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Step 1: initial conditions
We want to translate the temperature fluctuations observed in the 
CMB (well in the linear regime,              ) into initial conditions for 
particles’ positions and velocities. First, convert the angular power 
spectrum of temperature fluctuations in a 3D density power spectrum

� ⌧ 1

Observations

+


Modelling
Plots: Planck Collaboration
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Step 1: initial conditions
Once we have translated the CMB temperature fluctuations into a 
matter density power spectrum, we need to impose this spectrum on a 
set of N particles. This can be done through Zel’dovich approximation.
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Step 1: initial conditions
Once we have translated the CMB temperature fluctuations into a 
matter density power spectrum, we need to impose this spectrum on a 
set of N particles. This can be done through Zel’dovich approximation.

A

mailto:marco.baldi5@unibo.it
mailto:marco.baldi5@unibo.it


Marco Baldi - Cosmological Simulations - marco.baldi5@unibo.it

Step 1: initial conditions
Once we have translated the CMB temperature fluctuations into a 
matter density power spectrum, we need to impose this spectrum on a 
set of N particles. This can be done through Zel’dovich approximation.

A
Take Poisson’s Equation and substitute the density growth solution

�(a) = D(a)�0

r2� = 4⇡Ga2⇢̄� = 4⇡Ga2
⇢̄0
a3

D(a)�0
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Step 1: initial conditions
Once we have translated the CMB temperature fluctuations into a 
matter density power spectrum, we need to impose this spectrum on a 
set of N particles. This can be done through Zel’dovich approximation.

A
Take Poisson’s Equation and substitute the density growth solution

�(a) = D(a)�0

r2� = 4⇡Ga2⇢̄� = 4⇡Ga2
⇢̄0
a3

D(a)�0

This implies

r2� =
D(a)

a
r2�0 ) �(a) =

D(a)

a
�0

So that in matter domination (                  ) one has D(a) ⇠ a �(a) ⇠ const.
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Step 1: initial conditions
Once we have translated the CMB temperature fluctuations into a 
matter density power spectrum, we need to impose this spectrum on a 
set of N particles. This can be done through Zel’dovich approximation.

B
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Step 1: initial conditions
Once we have translated the CMB temperature fluctuations into a 
matter density power spectrum, we need to impose this spectrum on a 
set of N particles. This can be done through Zel’dovich approximation.

B
Take the Euler equation

v̇ +Hv = �1

a
r� ! @(av)

@t
= �r�
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Step 1: initial conditions
Once we have translated the CMB temperature fluctuations into a 
matter density power spectrum, we need to impose this spectrum on a 
set of N particles. This can be done through Zel’dovich approximation.

B
Take the Euler equation

v̇ +Hv = �1

a
r� ! @(av)

@t
= �r�

and integrate it:

av = �
Z

r�dt = �r�0

Z
D(a)

a
dt
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Step 1: initial conditions
Once we have translated the CMB temperature fluctuations into a 
matter density power spectrum, we need to impose this spectrum on a 
set of N particles. This can be done through Zel’dovich approximation.

B
Take the Euler equation

v̇ +Hv = �1

a
r� ! @(av)

@t
= �r�

and integrate it:

av = �
Z

r�dt = �r�0

Z
D(a)

a
dt

so to get:

v = �r�0

a

Z
D(a)

a
dt
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Step 1: initial conditions
Once we have translated the CMB temperature fluctuations into a 
matter density power spectrum, we need to impose this spectrum on a 
set of N particles. This can be done through Zel’dovich approximation.

C
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Step 1: initial conditions
Once we have translated the CMB temperature fluctuations into a 
matter density power spectrum, we need to impose this spectrum on a 
set of N particles. This can be done through Zel’dovich approximation.

C
Take the perturbations evolution equation

�̈ + 2H �̇ = 4⇡G⇢̄� = 4⇡G
⇢̄0

a3
�
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Step 1: initial conditions
Once we have translated the CMB temperature fluctuations into a 
matter density power spectrum, we need to impose this spectrum on a 
set of N particles. This can be done through Zel’dovich approximation.

C
Take the perturbations evolution equation

�̈ + 2H �̇ = 4⇡G⇢̄� = 4⇡G
⇢̄0

a3
�

D(a)and substitute its solution           : 

D̈ + 2HḊ = 4⇡G
⇢̄0

a3
D ! 1

a2

@(a2Ḋ)

@t
= 4⇡G

⇢̄0

a3
D
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Step 1: initial conditions
Once we have translated the CMB temperature fluctuations into a 
matter density power spectrum, we need to impose this spectrum on a 
set of N particles. This can be done through Zel’dovich approximation.

C
Take the perturbations evolution equation

�̈ + 2H �̇ = 4⇡G⇢̄� = 4⇡G
⇢̄0

a3
�

D(a)and substitute its solution           : 

D̈ + 2HḊ = 4⇡G
⇢̄0

a3
D ! 1

a2

@(a2Ḋ)

@t
= 4⇡G

⇢̄0

a3
D

then integrate it:
a2Ḋ

4⇡G⇢̄0
=

Z
D(a)

a
dt
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Step 1: initial conditions
Once we have translated the CMB temperature fluctuations into a 
matter density power spectrum, we need to impose this spectrum on a 
set of N particles. This can be done through Zel’dovich approximation.

D
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Step 1: initial conditions
Once we have translated the CMB temperature fluctuations into a 
matter density power spectrum, we need to impose this spectrum on a 
set of N particles. This can be done through Zel’dovich approximation.

D
Combine the results of B and C

a2Ḋ

4⇡G⇢̄0
=

Z
D(a)

a
dtv = �r�0

a

Z
D(a)

a
dt
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Step 1: initial conditions
Once we have translated the CMB temperature fluctuations into a 
matter density power spectrum, we need to impose this spectrum on a 
set of N particles. This can be done through Zel’dovich approximation.

D
Combine the results of B and C

a2Ḋ

4⇡G⇢̄0
=

Z
D(a)

a
dtv = �r�0

a

Z
D(a)

a
dt

To get:

ẋ =
v

a
= �r�0

a2

Z
D(a)

a
dt = �r�0

a2
a2Ḋ

4⇡G⇢̄0
= �

˙Dr�0

4⇡G⇢̄0
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Step 1: initial conditions
Once we have translated the CMB temperature fluctuations into a 
matter density power spectrum, we need to impose this spectrum on a 
set of N particles. This can be done through Zel’dovich approximation.

E
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Step 1: initial conditions
Once we have translated the CMB temperature fluctuations into a 
matter density power spectrum, we need to impose this spectrum on a 
set of N particles. This can be done through Zel’dovich approximation.

E
Now integrate the latter to get the Zel’dovich approximation:

ẋ = � Ḋr�0

4⇡G⇢̄0
) x(a)� x0 = � r�0

4⇡G⇢̄0
D(a) ⇠ �ar�(a)

4⇡G⇢̄0
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Step 1: initial conditions
Once we have translated the CMB temperature fluctuations into a 
matter density power spectrum, we need to impose this spectrum on a 
set of N particles. This can be done through Zel’dovich approximation.

E
Now integrate the latter to get the Zel’dovich approximation:

ẋ = � Ḋr�0

4⇡G⇢̄0
) x(a)� x0 = � r�0

4⇡G⇢̄0
D(a) ⇠ �ar�(a)

4⇡G⇢̄0

so that we can define the displacement field as

 ⌘ x� x0 = �ar�(a)
4⇡G⇢̄0

that allows to evolve particles’ positions in the linear regime 
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Step 1: initial conditions
Once we have translated the CMB temperature fluctuations into a 
matter density power spectrum, we need to impose this spectrum on a 
set of N particles. This can be done through Zel’dovich approximation.

F
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Step 1: initial conditions
Once we have translated the CMB temperature fluctuations into a 
matter density power spectrum, we need to impose this spectrum on a 
set of N particles. This can be done through Zel’dovich approximation.

F
Take the Fourier transform of the displacement field:

 = �ar�(a)
4⇡G⇢̄0

!  k =
a(ik)�k
4⇡G⇢̄0
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Step 1: initial conditions
Once we have translated the CMB temperature fluctuations into a 
matter density power spectrum, we need to impose this spectrum on a 
set of N particles. This can be done through Zel’dovich approximation.

F

and of Poisson’s Equation:

r2� = 4⇡Ga2
⇢̄0
a3

D(a)�0 ! �k2�k =
4⇡G⇢̄0

a
�k

Take the Fourier transform of the displacement field:

 = �ar�(a)
4⇡G⇢̄0

!  k =
a(ik)�k
4⇡G⇢̄0
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Step 1: initial conditions
Once we have translated the CMB temperature fluctuations into a 
matter density power spectrum, we need to impose this spectrum on a 
set of N particles. This can be done through Zel’dovich approximation.

F

and of Poisson’s Equation:

r2� = 4⇡Ga2
⇢̄0
a3

D(a)�0 ! �k2�k =
4⇡G⇢̄0

a
�k

Take the Fourier transform of the displacement field:

 = �ar�(a)
4⇡G⇢̄0

!  k =
a(ik)�k
4⇡G⇢̄0

then substitute:

 k =
a(ik)

4⇡G⇢̄0

4⇡G⇢̄0
ak2

�k = ik
�k
k2
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Step 1: initial conditions
Once we have translated the CMB temperature fluctuations into a 
matter density power spectrum, we need to impose this spectrum on a 
set of N particles. This can be done through Zel’dovich approximation.

G
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Step 1: initial conditions
Once we have translated the CMB temperature fluctuations into a 
matter density power spectrum, we need to impose this spectrum on a 
set of N particles. This can be done through Zel’dovich approximation.

G
Now use the power spectrum (from CMB observations) to obtain a 
statistical realisation of the density field       :�k

P (k) = h|�k|2i ) �k =
p

P (k)Ake
i'k
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Step 1: initial conditions
Once we have translated the CMB temperature fluctuations into a 
matter density power spectrum, we need to impose this spectrum on a 
set of N particles. This can be done through Zel’dovich approximation.

G
Now use the power spectrum (from CMB observations) to obtain a 
statistical realisation of the density field       :�k

P (k) = h|�k|2i ) �k =
p

P (k)Ake
i'k

where                                        and                  are drawn from a 
Gaussian distribution. Finally, one gets:

ẋ =
Ḋ

D
 ! vk = a

Ḋ

D
 k

x� x0 =  ! (x� x0)k = ik
�k
k2

Ake
i�k = B1 + iB2 B1 , B2
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Step 1: initial conditions

Unperturbed positions

(homogeneous grid)

Initial Conditions

(Zel’dovich)

Fourier transforming back to position space we obtain the desired 
initial conditions for the simulation.
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How?
Solving gravity
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Step 2: Solving gravity
Now that we have an initial particle distribution with well-defined 
values of        and       we need to solve the dynamics:x v

v̇ = �H(t)v � 1

a
rx� ṗi = �rx�(xi)or
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Step 2: Solving gravity
Now that we have an initial particle distribution with well-defined 
values of        and       we need to solve the dynamics:x v

v̇ = �H(t)v � 1

a
rx� ṗi = �rx�(xi)or

for which we need to know the gravitational potential:

r2
x� = 4⇡G⇢̄a2�(x)

r2
x� = 4⇡Ga2⇢(x)
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Step 2: Solving gravity
Now that we have an initial particle distribution with well-defined 
values of        and       we need to solve the dynamics:x v

v̇ = �H(t)v � 1

a
rx� ṗi = �rx�(xi)or

�(xi) = �1

a

X

j 6=i

Gmj

|xi � xj |
or

for which we need to know the gravitational potential:

r2
x� = 4⇡G⇢̄a2�(x)

r2
x� = 4⇡Ga2⇢(x)
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Step 2: Solving gravity
Now that we have an initial particle distribution with well-defined 
values of        and       we need to solve the dynamics:x v

v̇ = �H(t)v � 1

a
rx� ṗi = �rx�(xi)or

�(xi) = �1

a

X

j 6=i

Gmj

|xi � xj |
or

Poisson Solver: 
Need to solve 2nd order 
partial differential equations 
to get the potential given the 
density

for which we need to know the gravitational potential:

r2
x� = 4⇡G⇢̄a2�(x)

r2
x� = 4⇡Ga2⇢(x)

mailto:marco.baldi5@unibo.it
mailto:marco.baldi5@unibo.it


Marco Baldi - Cosmological Simulations - marco.baldi5@unibo.it

Step 2: Solving gravity
Now that we have an initial particle distribution with well-defined 
values of        and       we need to solve the dynamics:x v

v̇ = �H(t)v � 1

a
rx� ṗi = �rx�(xi)or

Direct Summation: 
Compute force on particle i given by 
all other particles j≠i in the simulation 
domain

�(xi) = �1

a

X

j 6=i

Gmj

|xi � xj |
or

Poisson Solver: 
Need to solve 2nd order 
partial differential equations 
to get the potential given the 
density

for which we need to know the gravitational potential:

r2
x� = 4⇡G⇢̄a2�(x)

r2
x� = 4⇡Ga2⇢(x)
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Requires order of N2 operations, 
which quickly becomes prohibitive 
for large N

Step 2: Solving gravity
Now that we have an initial particle distribution with well-defined 
values of        and       we need to solve the dynamics:x v

v̇ = �H(t)v � 1

a
rx� ṗi = �rx�(xi)or

Direct Summation: 
Compute force on particle i given by 
all other particles j≠i in the simulation 
domain

�(xi) = �1

a

X

j 6=i

Gmj

|xi � xj |
or

Poisson Solver: 
Need to solve 2nd order 
partial differential equations 
to get the potential given the 
density

for which we need to know the gravitational potential:

r2
x� = 4⇡G⇢̄a2�(x)

r2
x� = 4⇡Ga2⇢(x)
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Solving gravity: a note on collisionless systems
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Solving gravity: a note on collisionless systems
We know that the relaxation time of a system of N objects interacting 
through gravity is given by

trelax =
N

8 lnN
tcross

where             is the typical crossing time of the system.tcross

(Chandrasekhar, 1943)
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Solving gravity: a note on collisionless systems

The system will behave as collision less when evolving over a time 
span                    . For dark matter particles in a galaxy one hast ⌧ trelax

N ⇠ 1067 ) trelax ⇠ 1063/H0tcross ⇠ 0.1/H0

We know that the relaxation time of a system of N objects interacting 
through gravity is given by

trelax =
N

8 lnN
tcross

where             is the typical crossing time of the system.tcross

(Chandrasekhar, 1943)
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Solving gravity: a note on collisionless systems

The system will behave as collision less when evolving over a time 
span                    . For dark matter particles in a galaxy one hast ⌧ trelax

N ⇠ 1067 ) trelax ⇠ 1063/H0tcross ⇠ 0.1/H0

So dark matter in a galaxy is evolving collisionlessly throughout the 
whole cosmic history. This is true also for (standard cold) dark matter 
in any larger cosmic volume

We know that the relaxation time of a system of N objects interacting 
through gravity is given by

trelax =
N

8 lnN
tcross

where             is the typical crossing time of the system.tcross

(Chandrasekhar, 1943)
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Solving gravity: a note on collisionless systems

The Bullet Cluster
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Solving gravity: a note on collisionless systems

COLLISIONLESS

The Bullet Cluster
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Solving gravity: a note on collisionless systems

COLLISIONLESS

COLLISIONAL

The Bullet Cluster
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Solving gravity: a note on collisionless systems
So we know that (standard cold) dark matter in the Universe is 
expected to behave as a collision less system. However, we will 
sample it with mass elements representing a (huge) ensemble of 
fundamental particles (so N is much lower than in reality):

m� ⇡ 100Gev/c2

msim ⇡ 108 � 1010 M�/h

)
One simulation 
particle represents

~ 1060 dark matter 
particles!
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Solving gravity: a note on collisionless systems
So we know that (standard cold) dark matter in the Universe is 
expected to behave as a collision less system. However, we will 
sample it with mass elements representing a (huge) ensemble of 
fundamental particles (so N is much lower than in reality):

m� ⇡ 100Gev/c2

msim ⇡ 108 � 1010 M�/h

)
One simulation 
particle represents

~ 1060 dark matter 
particles!

Still, as long as we can ensure                           the system can still 
remain collisionless, and the orbits of the simulation particles will 
faithfully represent the motion of the fundamental particles 

trelax � tsim
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Nonetheless, rare two-body encounters and formation of bound 
particle pairs may still introduce collisional effects. To prevent this, one 
can modify the force law by softening it at small distances:

Solving gravity: a note on collisionless systems
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Nonetheless, rare two-body encounters and formation of bound 
particle pairs may still introduce collisional effects. To prevent this, one 
can modify the force law by softening it at small distances:

Solving gravity: a note on collisionless systems

✏

�(xi) = �1

a

X

j 6=i

Gmj

[(xi � xj)2 + ✏2]
1
2
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Nonetheless, rare two-body encounters and formation of bound 
particle pairs may still introduce collisional effects. To prevent this, one 
can modify the force law by softening it at small distances:

Solving gravity: a note on collisionless systems

✏

�(xi) = �1

a

X

j 6=i

Gmj

[(xi � xj)2 + ✏2]
1
2

✏ is called gravitational softening
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Nonetheless, rare two-body encounters and formation of bound 
particle pairs may still introduce collisional effects. To prevent this, one 
can modify the force law by softening it at small distances:

Solving gravity: a note on collisionless systems

✏

�(xi) = �1

a

X

j 6=i

Gmj

[(xi � xj)2 + ✏2]
1
2

✏ too small implies:

• possible collisional effects in the system

• integration of low-impact parameter 

orbits very expensive

✏ is called gravitational softening
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Nonetheless, rare two-body encounters and formation of bound 
particle pairs may still introduce collisional effects. To prevent this, one 
can modify the force law by softening it at small distances:

Solving gravity: a note on collisionless systems

✏

�(xi) = �1

a

X

j 6=i

Gmj

[(xi � xj)2 + ✏2]
1
2

✏ too small implies:

• possible collisional effects in the system

• integration of low-impact parameter 

orbits very expensive

too large implies:

• reduced spatial resolution

✏

✏ is called gravitational softening
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Nonetheless, rare two-body encounters and formation of bound 
particle pairs may still introduce collisional effects. To prevent this, one 
can modify the force law by softening it at small distances:

Solving gravity: a note on collisionless systems

✏

�(xi) = �1

a

X

j 6=i

Gmj

[(xi � xj)2 + ✏2]
1
2

✏ too small implies:

• possible collisional effects in the system

• integration of low-impact parameter 

orbits very expensive

too large implies:

• reduced spatial resolution

✏

typically 2-4% of the mean inter-particle 
separation


✏

✏ is called gravitational softening
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Requires order of N2 operations, 
which quickly becomes prohibitive 
for large N

Step 2: Solving gravity
Now that we have an initial particle distribution with well-defined 
values of        and       we need to solve the dynamics:x v

v̇ = �H(t)v � 1

a
rx� ṗi = �rx�(xi)or

Direct Summation: 
Compute force on particle i given by 
all other particles j≠i in the simulation 
domain

or �(xi) = �1

a

X

j 6=i

Gmj

[(xi � xj)2 + ✏2]
1
2

Poisson Solver: 
Need to solve 2nd order 
partial differential equations 
to get the potential given the 
density

�for which we need to know the peculiar potential      that follows:

r2
x� = 4⇡G⇢̄a2�(x)

r2
x� = 4⇡Ga2⇢(x)
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How?
Solving gravity: Particle-Mesh
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Solving gravity: the Particle-Mesh (PM) method

A possible way to solve for the gravitational potential is the so-called 
particle-mesh (PM) method, which exploits the properties of the 
Poisson’s equation in Fourier space.
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Solving gravity: the Particle-Mesh (PM) method

Instead of computing      by direct summation on all particles, the 
solution to the gravitational Poisson’s Equation

can be obtained through a convolution of the density field          
with a Green’s Function

�

⇢(x)

�(x) =

Z
g(x� x0)⇢(x0)dx0 = g(x) ? ⇢(x)

r2
x� = 4⇡Ga2⇢(x)

A possible way to solve for the gravitational potential is the so-called 
particle-mesh (PM) method, which exploits the properties of the 
Poisson’s equation in Fourier space.
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Example: for vacuum boundary conditions (i.e. the density goes to 
zero at infinity) one has:

Solving gravity: the Particle-Mesh (PM) method

�(x) = �G

Z
⇢(x0)

|x� x0|dx
0 ) g(x) = � G

|x|
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Example: for vacuum boundary conditions (i.e. the density goes to 
zero at infinity) one has:

The PM method exploits the convolution theorem: 
in Fourier space the convolution becomes a simple multiplication 
(between the Fourier transform of the Green’s Function      and the 
Fourier transform of the density field     ) so that the gravitational 
potential in Fourier space        can be simply computed as:

gk
⇢k

�k

�k = gk · ⇢k

Solving gravity: the Particle-Mesh (PM) method

�(x) = �G

Z
⇢(x0)

|x� x0|dx
0 ) g(x) = � G

|x|
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Therefore, the PM method requires three mathematical operations 
to solve for the gravitational potential:

1. Compute the Fourier transform of the density field
2. Multiply the density field in Fourier space with the Green’s 

function to obtain the potential
3. Compute the inverse Fourier transform of the potential to 

position space to get 

However, in a system of N discrete particles, one does not have a 
density field, which has to be computed starting from the particles.

Solving gravity: the Particle-Mesh (PM) method

⇢k

�k = gk · ⇢k

�k ! �(x)
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Therefore, the PM algorithm is made of four different steps, only one 
of which is the actual potential computation:

A. Density assignment (from particle’s position to a density field)
B. Potential computation (comprising the 3 mathematical 

operations discussed above)
C. Computation of the force (acceleration) field from the potential
D. Assign the forces to individual particles

Solving gravity: the Particle-Mesh (PM) method
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Step A: Density assignment

Solving gravity: PM mass assignment
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Step A: Density assignment
How can we go from a set of discrete point-like masses to a 
continuous density field? Consider a set of particles in the 
simulation domain, and a cubic cartesian grid with step h

Solving gravity: PM mass assignment
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Step A: Density assignment
How can we go from a set of discrete point-like masses to a 
continuous density field? Consider a set of particles in the 
simulation domain, and a cubic cartesian grid with step h

Solving gravity: PM mass assignment

h
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Step A: Density assignment
How can we go from a set of discrete point-like masses to a 
continuous density field? Consider a set of particles in the 
simulation domain, and a cubic cartesian grid with step h

We can give particles a “shape”

S(x) with a corresponding volume of 
uniform density, and assign to each 
mesh cell the fraction of the particle’s 
mass that falls inside the cell.


If we call         the position of the cell 
centres and      the position of particle i

xm
xi

the overlap of a cell (i.e. the fraction of 
the particle’s volume falling in the cell) 
is given by:

Solving gravity: PM mass assignment

h

mailto:marco.baldi5@unibo.it
mailto:marco.baldi5@unibo.it


Marco Baldi - Cosmological Simulations - marco.baldi5@unibo.it

Step A: Density assignment

W (xm � xi) =

Z xm+h
2

xm�h
2

S(x0 � xi)dx
0

Solving gravity: PM mass assignment

h
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Step A: Density assignment

W (xm � xi) =

Z xm+h
2

xm�h
2

S(x0 � xi)dx
0

where we have defined:

=

Z
⇧

✓
x0 � xm

h

◆
S(x0 � xi)dx

0

Solving gravity: PM mass assignment

h
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Step A: Density assignment

W (xm � xi) =

Z xm+h
2

xm�h
2

S(x0 � xi)dx
0

where we have defined:

=

Z
⇧

✓
x0 � xm

h

◆
S(x0 � xi)dx

0

So the density assignment function W 
is the convolution

W (x) = ⇧
⇣x
h

⌘
? S(x)

Solving gravity: PM mass assignment

h
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Step A: Density assignment

W (xm � xi) =

Z xm+h
2

xm�h
2

S(x0 � xi)dx
0

where we have defined:

=

Z
⇧

✓
x0 � xm

h

◆
S(x0 � xi)dx

0

So the density assignment function W 
is the convolution

W (x) = ⇧
⇣x
h

⌘
? S(x)

and the density on the grid is:

⇢(xm) =
1

h3

NX

i=1

miW (xi � xm)

Solving gravity: PM mass assignment

h
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Step A: Density assignment

Solving gravity: PM mass assignment

h
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Step A: Density assignment
Shape function: a Dirac delta 
A single particle contributes all its mass to 
the cell it belongs to 
Density in the cell ρ = 4 m / h3

Solving gravity: PM mass assignment

h
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Step A: Density assignment
Shape function: a Dirac delta 
A single particle contributes all its mass to 
the cell it belongs to 
Density in the cell ρ = 4 m / h3

Shape function: a cubic volume of side h 
A single particle contributes some mass 
to 8 different grid cells

Solving gravity: PM mass assignment

h
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Step A: Density assignment
Shape function: a Dirac delta 
A single particle contributes all its mass to 
the cell it belongs to 
Density in the cell ρ = 4 m / h3

Shape function: a cubic volume of side h 
A single particle contributes some mass 
to 8 different grid cells

Solving gravity: PM mass assignment

h
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Step A: Density assignment
Shape function: a Dirac delta 
A single particle contributes all its mass to 
the cell it belongs to 
Density in the cell ρ = 4 m / h3

Shape function: a cubic volume of side h 
A single particle contributes some mass 
to 8 different grid cells

Solving gravity: PM mass assignment

h

This is called Nearest-Grid-Point, 
or NGP
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Step A: Density assignment
Shape function: a Dirac delta 
A single particle contributes all its mass to 
the cell it belongs to 
Density in the cell ρ = 4 m / h3

Shape function: a cubic volume of side h 
A single particle contributes some mass 
to 8 different grid cells

Solving gravity: PM mass assignment

h

This is called Nearest-Grid-Point, 
or NGP

This is called Cloud-In-Cell, or CIC
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xm�1 xm xm+1 xm+2

xi

xm�1 xm xm+1 xm+2

xi

xm�1 xm xm+1 xm+2

xi

Step A: Density assignment
Some popular Shape Functions for the density assignment

Nearest Grid Point

NGP

Clouds-In-Cell

CIC

Triangular Shaped Cloud

TSC

Solving gravity: PM mass assignment

For the force assignment (step D), the same assignment function used 
for step A needs to be used to ensure momentum conservation.

Mass is distributed over D1 cells

Mass is distributed over D2 cells

Mass is distributed over D3 cells

Resulting density (and force)

piecewise constant 

Resulting density (and force)

piecewise linear and continuous

Resulting density (and force)

have continuous first derivative
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Step B: Potential Computation
Once the density field in real space has been obtained, in order to 
compute the gravitational potential we first need to get its Fourier 
transform. If we assume a periodic density field in a cubic box of 
size L, this can be expressed as a Fourier series:

where⇢(x) =
X

k

⇢ke
ik·x

Solving gravity: PM potential computation
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Step B: Potential Computation
Once the density field in real space has been obtained, in order to 
compute the gravitational potential we first need to get its Fourier 
transform. If we assume a periodic density field in a cubic box of 
size L, this can be expressed as a Fourier series:

where⇢(x) =
X

k

⇢ke
ik·x

Solving gravity: PM potential computation

One can do the same thing for the potential

�(x) =
X

k

�ke
ik·x
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Step B: Potential Computation

and after substitution, the Poisson equation reads:

)r2� = 4⇡G⇢(x) r2

 
X

k

�ke
ik·x

!
= 4⇡G

 
X

k

⇢ke
ik·x

!

Once the density field in real space has been obtained, in order to 
compute the gravitational potential we first need to get its Fourier 
transform. If we assume a periodic density field in a cubic box of 
size L, this can be expressed as a Fourier series:

where⇢(x) =
X

k

⇢ke
ik·x

Solving gravity: PM potential computation

One can do the same thing for the potential

�(x) =
X

k

�ke
ik·x
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Step B: Potential Computation
The derivative on the LHS can be easily performed:

X

k

�
�k2�k

�
eik·x = 4⇡G

X

k

⇢ke
ik·x

Solving gravity: PM potential computation
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Step B: Potential Computation
The derivative on the LHS can be easily performed:

X

k

�
�k2�k

�
eik·x = 4⇡G

X

k

⇢ke
ik·x

As the equality must hold for each Fourier mode k, this gives the 
solution for the gravitational potential in Fourier space:

�k = �4⇡G

k2
⇢k

Solving gravity: PM potential computation
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Step B: Potential Computation
The derivative on the LHS can be easily performed:

X

k

�
�k2�k

�
eik·x = 4⇡G

X

k

⇢ke
ik·x

As the equality must hold for each Fourier mode k, this gives the 
solution for the gravitational potential in Fourier space:

�k = �4⇡G

k2
⇢k

From which we see that the Green’s function for the Poisson’s 
equation with periodic boundary conditions is given by:

gk = �4⇡G

k2

Solving gravity: PM potential computation
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Step B: Potential Computation
We can now Fourier transform back the gravitational potential to real 
space, and have a potential field defined in each of the grid cells.

F�1(�k) = �(xm)

We can now compute the forces at the cells’ centers…

Solving gravity: PM potential computation
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Step C: Force Computation
Once the gravitational potential in real space is known, one has to 
compute the force field in each of the grid cells. This is done by 
approximating the force field by finite differencing:

f = �r(�)

Solving gravity: PM force computation
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Step C: Force Computation
Once the gravitational potential in real space is known, one has to 
compute the force field in each of the grid cells. This is done by 
approximating the force field by finite differencing:

f = �r(�)

Possible finite differencing schemes:
2nd order:

Solving gravity: PM force computation
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Step C: Force Computation
Once the gravitational potential in real space is known, one has to 
compute the force field in each of the grid cells. This is done by 
approximating the force field by finite differencing:

f = �r(�)

Possible finite differencing schemes:
2nd order:

4th order:

Solving gravity: PM force computation
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Step D: Force assignment
Once the force field on the grid cells in real space is known, in order to 
evolve the particles system one needs to compute the forces (or the 
accelerations) on the particles’ positions.

Solving gravity: PM force computation
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Step D: Force assignment
Once the force field on the grid cells in real space is known, in order to 
evolve the particles system one needs to compute the forces (or the 
accelerations) on the particles’ positions.

Solving gravity: PM force computation

where the same interpolation kernel W that was used for the 
density assignment in Step A MUST be used to ensure for 
momentum conservation

This is done by interpolation:
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Advantages and disadvantages of the PM method

Solving gravity: the Particle-Mesh method
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Advantages and disadvantages of the PM method

The main advantage of the PM method is that it is FAST and SIMPLE, 
complexity scales like N

Solving gravity: the Particle-Mesh method
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Advantages and disadvantages of the PM method

The main advantage of the PM method is that it is FAST and SIMPLE, 
complexity scales like N

The main disadvantage of the PM algorithm is the fact that the 
spatial resolution is limited to the mesh size (h in our examples).

This is a very serious problem for astrophysical and (most importantly) 
for cosmological simulations, where the dynamic range of the problem 
is large: systems of interest may be unresolved as they cluster below 
the mesh scale

Solving gravity: the Particle-Mesh method
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Advantages and disadvantages of the PM method

Solving gravity: the Particle-Mesh method
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Advantages and disadvantages of the PM method

Solving gravity: the Particle-Mesh method
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Advantages and disadvantages of the PM method

Solving gravity: the Particle-Mesh method
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Advantages and disadvantages of the PM method

Solving gravity: the Particle-Mesh method
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How?
Solving gravity: Tree methods
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A different method to solve the N-body problem is the so-called Tree 
algorithm: the simulation domain is recursively divided into sub-
domains (tree nodes) forming the different levels of a hierarchical tree 
structure.

Solving gravity: the Tree method
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A different method to solve the N-body problem is the so-called Tree 
algorithm: the simulation domain is recursively divided into sub-
domains (tree nodes) forming the different levels of a hierarchical tree 
structure.

Solving gravity: the Tree method

The main goal of such procedure is to group distant particles 
together in the potential calculations and approximate their 
gravitational potential with a multipole expansion. This reduces 
the complexity of the algorithm to O(N log[N]).
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Basic structure of a hierarchical tree:

ROOT node 
(the entire simulation domain)

Solving gravity: the Tree method
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Basic structure of a hierarchical tree:

CHILD nodes - level 1 
(1/8th of the simulation domain)

Solving gravity: the Tree method
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Basic structure of a hierarchical tree:

CHILD nodes - level 2 
(1/64th of the simulation domain)

And so on until child nodes have at 
most 1 particle

Solving gravity: the Tree method
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This results in a Tree structure of the nodes:
Figure from 
V. Springel

Solving gravity: the Tree method
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This results in a Tree structure of the nodes:
Figure from 
V. Springel

Solving gravity: the Tree method

mailto:marco.baldi5@unibo.it
mailto:marco.baldi5@unibo.it


Marco Baldi - Cosmological Simulations - marco.baldi5@unibo.it

This results in a Tree structure of the nodes:
Figure from 
V. Springel

Solving gravity: the Tree method
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This results in a Tree structure of the nodes:
Figure from 
V. Springel

Solving gravity: the Tree method
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Why is the tree advantageous?

Solving gravity: the Tree method
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Why is the tree advantageous?

Solving gravity: the Tree method

xi

Consider a group of particles at positions xi with 
their center of mass at position s. 

s

center of mass

origin
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Why is the tree advantageous?

Solving gravity: the Tree method

xi

Consider a group of particles at positions xi with 
their center of mass at position s. 

s

center of mass

origin

r

We want to compute their resulting gravitational 
potential on the target particle at position r
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Why is the tree advantageous?

Solving gravity: the Tree method

xi

Consider a group of particles at positions xi with 
their center of mass at position s. 

s

center of mass

origin

r

We want to compute their resulting gravitational 
potential on the target particle at position r

�(r) = �G
X

i

mi

|r� xi|

So, we want to compute:
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Why is the tree advantageous?

we can expand the factor:

for

1

|r� xi|
=

1

|(r� s)� (xi � s)|

|xi � s| ⌧ |y| y ⌘ |r� s|with 

Solving gravity: the Tree method

xi

Consider a group of particles at positions xi with 
their center of mass at position s. 

s

center of mass

origin

r

We want to compute their resulting gravitational 
potential on the target particle at position r

�(r) = �G
X

i

mi

|r� xi|

So, we want to compute:
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Why is the tree advantageous?

One gets (with some tedious calculations):

Solving gravity: the Tree method

xi
s

r

center of mass

origin
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Why is the tree advantageous?

One gets (with some tedious calculations):

vanishes when summed 
over all nodes particles

Solving gravity: the Tree method

xi
s

r

center of mass

origin
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Why is the tree advantageous?

Solving gravity: the Tree method

xi
s

r

center of mass

origin
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Why is the tree advantageous?

Solving gravity: the Tree method

xi
s

r

center of mass

origin

The group of particles can correspond to a particular Tree node
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Why is the tree advantageous?

So the following multipole moments can be 
computed and stored for all tree nodes:

• Monopole:

• Quadrupole tensor:

and the resulting potential is:

Solving gravity: the Tree method

xi
s

r

center of mass

origin

The group of particles can correspond to a particular Tree node
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The Tree algorithm is approximating the 
collective contribution to the gravitational 
potential of groups of “distant” particles with its 
multipole expansion.

Solving gravity: the Tree method

xi
s

r

center of mass

origin
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The Tree algorithm is approximating the 
collective contribution to the gravitational 
potential of groups of “distant” particles with its 
multipole expansion.

Solving gravity: the Tree method

xi
s

r

center of mass

origin�G
NnodeX

i=1

mi

|r� xi|
! �G

M

|y|

Often (as e.g. in Gadget2-3) only the 
Monopole is used, so that one can replace the 
Nnode interactions with a single interaction for 
its center of mass:
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Solving gravity: the Tree method

xi
s

r

The accuracy of the approximation can be 
adjusted by defining what “distant” means.

center of mass

origin
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Solving gravity: the Tree method

xi
s

r

The accuracy of the approximation can be 
adjusted by defining what “distant” means.

✓

This is done by setting a threshold for the 
angle      under which a given tree node (i.e. a 
group of particles) is “seen” from the target 
particle on which the potential is to be 
computed. Such threshold (dividing sufficiently 
distant nodes from closer ones) is called 
OPENING ANGLE

✓

center of mass

origin
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Advantages and disadvantages of the Tree method

Solving gravity: the Tree method
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Advantages and disadvantages of the Tree method
The main advantages of the tree method are the following:
• There is no intrinsic restriction to the dynamic range that can be 

achieved: spatial resolution automatically increases in regions where 
particles cluster

• It is possible to adjust the accuracy of the force calculation by 
tweaking the tree opening angle

• The speed of the algorithm does not strongly depend on the level of 
clustering

Solving gravity: the Tree method
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Advantages and disadvantages of the Tree method
The main advantages of the tree method are the following:
• There is no intrinsic restriction to the dynamic range that can be 

achieved: spatial resolution automatically increases in regions where 
particles cluster

• It is possible to adjust the accuracy of the force calculation by 
tweaking the tree opening angle

• The speed of the algorithm does not strongly depend on the level of 
clustering

Solving gravity: the Tree method

The main disadvantage of the tree method is that for highly 
homogeneous matter distributions (as e.g. the cosmic density field at 
high redshifts) the almost vanishing force on each particle is the 
result of the cancellation of many larger contributions. This makes 
it numerically expensive to obtain high accuracy in the force calculation.
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How?
Solving gravity: the Tree-PM method

(if you can’t beat them, join’em!)
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In order to overcome the latter disadvantage of the Tree method, and to 
exploit the high speed of the PM method, many N-body codes 
implement a combination of the Tree and PM algorithms, called the 
Tree-PM method. The idea is the following: 

Solving gravity: the TreePM method
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In order to overcome the latter disadvantage of the Tree method, and to 
exploit the high speed of the PM method, many N-body codes 
implement a combination of the Tree and PM algorithms, called the 
Tree-PM method. The idea is the following: 
1: Start from Poisson’s 
equation in Fourier 
space

�k =
4⇡G

k2
⇢k

Solving gravity: the TreePM method
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In order to overcome the latter disadvantage of the Tree method, and to 
exploit the high speed of the PM method, many N-body codes 
implement a combination of the Tree and PM algorithms, called the 
Tree-PM method. The idea is the following: 
1: Start from Poisson’s 
equation in Fourier 
space

�k =
4⇡G

k2
⇢k

2: Split the potential      into a 
short-range and a long-range 
components

�k

�long
k = �kexp(�k2r2s) �short

k = �k[1� exp(�k2r2s)]

Solving gravity: the TreePM method
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In order to overcome the latter disadvantage of the Tree method, and to 
exploit the high speed of the PM method, many N-body codes 
implement a combination of the Tree and PM algorithms, called the 
Tree-PM method. The idea is the following: 
1: Start from Poisson’s 
equation in Fourier 
space

�k =
4⇡G

k2
⇢k

2: Split the potential      into a 
short-range and a long-range 
components

�k

�long
k = �kexp(�k2r2s) �short

k = �k[1� exp(�k2r2s)]3: Solve for this potential using 
the PM method in Fourier space

Solving gravity: the TreePM method

mailto:marco.baldi5@unibo.it
mailto:marco.baldi5@unibo.it


Marco Baldi - Cosmological Simulations - marco.baldi5@unibo.it

In order to overcome the latter disadvantage of the Tree method, and to 
exploit the high speed of the PM method, many N-body codes 
implement a combination of the Tree and PM algorithms, called the 
Tree-PM method. The idea is the following: 
1: Start from Poisson’s 
equation in Fourier 
space

�k =
4⇡G

k2
⇢k

2: Split the potential      into a 
short-range and a long-range 
components

�k

�long
k = �kexp(�k2r2s) �short

k = �k[1� exp(�k2r2s)]3: Solve for this potential using 
the PM method in Fourier space 4: Inverse-Fourier transform this 

to real space and solve with Tree

�short(r) = F�1(�short
k ) = �Gm

r
erfc

✓
r

2rs

◆

Solving gravity: the TreePM method
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where the short-range potential features the complementary error 
function

Solving gravity: the TreePM method

�short(r) = �Gm

r
erfc

✓
r

2rs

◆
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where the short-range potential features the complementary error 
function

erfc(x) = 1� 1p
⇡

Z x

�x
e�t2dt

Solving gravity: the TreePM method

�short(r) = �Gm

r
erfc

✓
r

2rs

◆
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where the short-range potential features the complementary error 
function

The Tree-PM method retains all 
the  pros of the Tree algorithm, 
but has the main advantage of 
ensuring a fast and accurate 
computation of long-range 
forces in all situations.

erfc(x) = 1� 1p
⇡

Z x

�x
e�t2dt

Solving gravity: the TreePM method

�short(r) = �Gm

r
erfc

✓
r

2rs

◆
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short-range
force

long-range
force

exact
force

The Tree-PM force splitting

rs

Solving gravity: the TreePM method

Plot from Gadget2 code paper

Springel (2005)
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short-range
force

long-range
force

exact
force

The Tree-PM force splitting

rs

PM cell
size h

Solving gravity: the TreePM method

Plot from Gadget2 code paper

Springel (2005)

mailto:marco.baldi5@unibo.it
mailto:marco.baldi5@unibo.it


Marco Baldi - Cosmological Simulations - marco.baldi5@unibo.it

How?
Solving gravity: Multi-grid methods
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Solving gravity: Multigrid Iterative Solvers

r2
A different procedure to solve the Poisson equation is given by 
approximating the Laplace operator         on a grid.
Consider a 1D version of Poisson’s equation:

r2� =
@2�

@x2
= 4⇡G�(x)
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Solving gravity: Multigrid Iterative Solvers

r2
A different procedure to solve the Poisson equation is given by 
approximating the Laplace operator         on a grid.
Consider a 1D version of Poisson’s equation:

r2� =
@2�

@x2
= 4⇡G�(x)

If the potential        and the density      are discretised at N equally-
spaced points with spacing      the Laplace operator can be 
approximated as:

� �
h

✓
@2�

@x2

◆

i

' �i+1 + �i�1 � 2�i

h2
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Solving gravity: Multigrid Iterative Solvers

r2
A different procedure to solve the Poisson equation is given by 
approximating the Laplace operator         on a grid.
Consider a 1D version of Poisson’s equation:

r2� =
@2�

@x2
= 4⇡G�(x)

If the potential        and the density      are discretised at N equally-
spaced points with spacing      the Laplace operator can be 
approximated as:

� �
h

✓
@2�

@x2

◆

i

' �i+1 + �i�1 � 2�i

h2

so that Poisson’s equation becomes:
�i+1 + �i�1 � 2�i

h2
= 4⇡G�i
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Solving gravity: Multigrid Iterative Solvers

r2
A different procedure to solve the Poisson equation is given by 
approximating the Laplace operator         on a grid.
Consider a 1D version of Poisson’s equation:

r2� =
@2�

@x2
= 4⇡G�(x)

If the potential        and the density      are discretised at N equally-
spaced points with spacing      the Laplace operator can be 
approximated as:

� �
h

✓
@2�

@x2

◆

i

' �i+1 + �i�1 � 2�i

h2

so that Poisson’s equation becomes:
�i+1 + �i�1 � 2�i

h2
= 4⇡G�i

i

i+ 1i� 1

3-points stencil
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Solving gravity: Multigrid Iterative Solvers

This is a system of N algebraic equations for N unknowns.
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Solving gravity: Multigrid Iterative Solvers

This is a system of N algebraic equations for N unknowns.

Generalising to 2D one gets:

�
r2�

�
i,j

' �i+1,j + �i�1,j + �i,j+1 + �i,j�1 � 4�i,j

h2
= 4⇡G�i,j
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Solving gravity: Multigrid Iterative Solvers

This is a system of N algebraic equations for N unknowns.

Generalising to 2D one gets:

�
r2�

�
i,j

' �i+1,j + �i�1,j + �i,j+1 + �i,j�1 � 4�i,j

h2
= 4⇡G�i,j

i,j+1

i-1,j i,j i+1,j

i,j-1
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Solving gravity: Multigrid Iterative Solvers

This is a system of N algebraic equations for N unknowns.

Generalising to 2D one gets:

�
r2�

�
i,j

' �i+1,j + �i�1,j + �i,j+1 + �i,j�1 � 4�i,j

h2
= 4⇡G�i,j

i,j+1

i-1,j i,j i+1,j

i,j-1

5-points stencil

Update of a black cell depends 
only on values of red cells:

Red-Black sweep: first update 
half of the cells (all the black 
ones) and then the other half (all 
the red ones) using the updated 
values of the black cells
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Solving gravity: Multigrid Iterative Solvers

This is a system of N algebraic equations for N unknowns.
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Solving gravity: Multigrid Iterative Solvers

This is a system of N algebraic equations for N unknowns.

Generalising to 3D one gets:
�
r2�

�
i,j,k

' �i+1,j,k + �i�1,j,k + �i,j+1,k + �i,j�1,k + �i,j,k+1 + �i,j,k�1 � 6�i,j,k

h2
= 4⇡G�i,j,k
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Solving gravity: Multigrid Iterative Solvers

This is a system of N algebraic equations for N unknowns.

Generalising to 3D one gets:
�
r2�

�
i,j,k

' �i+1,j,k + �i�1,j,k + �i,j+1,k + �i,j�1,k + �i,j,k+1 + �i,j,k�1 � 6�i,j,k

h2
= 4⇡G�i,j,k

7-points stencil

Update of a black cell depends 
only on values of red cells:

Red-Black sweep: first update 
half of the cells (all the black 
ones) and then the other half (all 
the red ones) using the updated 
values of the black cells
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Solving gravity: Multigrid Iterative Solvers

This is a system of N algebraic equations for N unknowns.

Generalising to 3D one gets:
�
r2�

�
i,j,k

' �i+1,j,k + �i�1,j,k + �i,j+1,k + �i,j�1,k + �i,j,k+1 + �i,j,k�1 � 6�i,j,k

h2
= 4⇡G�i,j,k
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Solving gravity: Multigrid Iterative Solvers

This is a system of N algebraic equations for N unknowns.

Generalising to 3D one gets:
�
r2�

�
i,j,k

' �i+1,j,k + �i�1,j,k + �i,j+1,k + �i,j�1,k + �i,j,k+1 + �i,j,k�1 � 6�i,j,k

h2
= 4⇡G�i,j,k

Therefore, the solution of Poisson equation corresponds to finding the 
zeros of the function

[f(�)]i,j,k ⌘
�
r2�

�
i,j,k

� 4⇡G�i,j,k
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Solving gravity: Multigrid Iterative Solvers

This is a system of N algebraic equations for N unknowns.

Generalising to 3D one gets:
�
r2�

�
i,j,k

' �i+1,j,k + �i�1,j,k + �i,j+1,k + �i,j�1,k + �i,j,k+1 + �i,j,k�1 � 6�i,j,k

h2
= 4⇡G�i,j,k

Therefore, the solution of Poisson equation corresponds to finding the 
zeros of the function

[f(�)]i,j,k ⌘
�
r2�

�
i,j,k

� 4⇡G�i,j,k

Solving this by matrix inversion is computationally prohibitive for large 
grids as complexity grows like                but can be solved iteratively 
using Newton-Raphson’s method.

O(N3)
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Solving gravity: Multigrid Iterative Solvers

f(x) x̃

f(x̃) = 0 x̃(0)

A short recap of Newton-Raphson’s method.
For a 1D function           the zeros of the function (i.e. the values      for 
which                  ) can be found iteratively starting from a guess          
with the rule :

x̃(n+1) = x̃(n) � f(x̃(n))

f 0(x̃(n))
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Solving gravity: Multigrid Iterative Solvers

f(x) x̃

f(x̃) = 0 x̃(0)

A short recap of Newton-Raphson’s method.
For a 1D function           the zeros of the function (i.e. the values      for 
which                  ) can be found iteratively starting from a guess          
with the rule :

x̃(n+1) = x̃(n) � f(x̃(n))

f 0(x̃(n))

Therefore, for our function                     we will have:[f(�)]i,j,k

�(n+1)
i,j,k = �(n)

i,j,k � fi,j,k
@fi,j,k

@(�i,j,k)
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Solving gravity: Multigrid Iterative Solvers

f(x) x̃

f(x̃) = 0 x̃(0)

A short recap of Newton-Raphson’s method.
For a 1D function           the zeros of the function (i.e. the values      for 
which                  ) can be found iteratively starting from a guess          
with the rule :

x̃(n+1) = x̃(n) � f(x̃(n))

f 0(x̃(n))

Therefore, for our function                     we will have:[f(�)]i,j,k

�(n+1)
i,j,k = �(n)

i,j,k � fi,j,k
@fi,j,k

@(�i,j,k)

which can be iterated until 

|�(n+1)
i,j,k � �(n)

i,j,k| < ✏
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Solving gravity: Multigrid Iterative Solvers
As only neighbouring points in the grid communicate with each other at 
every iteration (7-points stencil) information propagates only by one cell 
per iteration: convergence is slow.
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Solving gravity: Multigrid Iterative Solvers
As only neighbouring points in the grid communicate with each other at 
every iteration (7-points stencil) information propagates only by one cell 
per iteration: convergence is slow.

Convergence can be fastened by using multi-grid acceleration:
1) map the target grid guess on a coarser grid (restriction)
2) get a (faster) solution for the large-scale structure on a coarser 

grid
3) repeat steps 1-2 until reaching a minimum grid resolution
4) map to a finer grid (prolongation) and use as a guess for new 

iteration on the finer grid
5) repeat step 4) until reaching again the target grid resolution
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Solving gravity: Multigrid Iterative Solvers
As only neighbouring points in the grid communicate with each other at 
every iteration (7-points stencil) information propagates only by one cell 
per iteration: convergence is slow.

Convergence can be fastened by using multi-grid acceleration:
1) map the target grid guess on a coarser grid (restriction)
2) get a (faster) solution for the large-scale structure on a coarser 

grid
3) repeat steps 1-2 until reaching a minimum grid resolution
4) map to a finer grid (prolongation) and use as a guess for new 

iteration on the finer grid
5) repeat step 4) until reaching again the target grid resolution

O(N logN)This is called V-cycle, and is shown to converge as 
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How?
Solving gravity: comparing solvers
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Gravity solvers compared
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Gravity solvers compared

Particle-Mesh

Solve

r2
x� = 4⇡Ga2⇢(x)

by summing individual 
potential contributions over 

all volume elements

�(x) = �G

Z
⇢(x0)

|x� x0|dx
0 ) g(x) = � G

|x|
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Gravity solvers compared

Particle-Mesh

Solve

r2
x� = 4⇡Ga2⇢(x)

by summing individual 
potential contributions over 

all volume elements

�(x) = �G

Z
⇢(x0)

|x� x0|dx
0 ) g(x) = � G

|x|

Direct summation 
(Tree)

Solve

�(r) = �G
X

i

mi

|r� xi|

by summing individual potential 
contributions over all mass 

elements
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Gravity solvers compared

Particle-Mesh

Solve

r2
x� = 4⇡Ga2⇢(x)

by summing individual 
potential contributions over 

all volume elements

�(x) = �G

Z
⇢(x0)

|x� x0|dx
0 ) g(x) = � G

|x|

Direct summation 
(Tree)

Solve

�(r) = �G
X

i

mi

|r� xi|

by summing individual potential 
contributions over all mass 

elements

Multi-grid 
(Newton-Raphson)

Solve

r2
x� = 4⇡Ga2⇢(x)

by approximating the Laplace 
operator as a discrete algebraic 

function
✓
@2�

@x2

◆

i

' �i+1 + �i�1 � 2�i

h2
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Gravity solvers compared

Particle-Mesh

Solve

r2
x� = 4⇡Ga2⇢(x)

by summing individual 
potential contributions over 

all volume elements

�(x) = �G

Z
⇢(x0)

|x� x0|dx
0 ) g(x) = � G

|x|

Direct summation 
(Tree)

Solve

�(r) = �G
X

i

mi

|r� xi|

by summing individual potential 
contributions over all mass 

elements

Multi-grid 
(Newton-Raphson)

Solve

r2
x� = 4⇡Ga2⇢(x)

by approximating the Laplace 
operator as a discrete algebraic 

function
✓
@2�

@x2

◆

i

' �i+1 + �i�1 � 2�i

h2

Rely on the Superposition Principle, i.e.
r2�1 = 4⇡G⇢1 ,r2�2 = 4⇡G⇢2

) r2[�1 + �2] = 4⇡G[⇢1 + ⇢2]

which is a consequence of the linearity of Poisson Equation
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Gravity solvers compared

Particle-Mesh

Solve

r2
x� = 4⇡Ga2⇢(x)

by summing individual 
potential contributions over 

all volume elements

�(x) = �G

Z
⇢(x0)

|x� x0|dx
0 ) g(x) = � G

|x|

Direct summation 
(Tree)

Solve

�(r) = �G
X

i

mi

|r� xi|

by summing individual potential 
contributions over all mass 

elements

Multi-grid 
(Newton-Raphson)

Solve

r2
x� = 4⇡Ga2⇢(x)

by approximating the Laplace 
operator as a discrete algebraic 

function
✓
@2�

@x2

◆

i

' �i+1 + �i�1 � 2�i

h2

Does not rely on the 
superposition principle

Works also for non-linear 
Poisson-like equations

Rely on the Superposition Principle, i.e.
r2�1 = 4⇡G⇢1 ,r2�2 = 4⇡G⇢2

) r2[�1 + �2] = 4⇡G[⇢1 + ⇢2]

which is a consequence of the linearity of Poisson Equation
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How?
Time integration
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tn ẍi = �ri�(xi) = f(xi)

Once the force (hence the acceleration) on each particle is known, the 
system has to be moved forward in time (positions and velocities)

Step 3: Time integration
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Once the force (hence the acceleration) on each particle is known, the 
system has to be moved forward in time (positions and velocities)

tn + Δt ẍi = �ri�(xi) = f(xi)

Several possible time integration 
schemes (Euler, Runge-Kutta, mid-
point), the most widely used is the 
LEAPFROG:

Kick

Kick

Drift

Step 3: Time integration

xn+1 = xn + vn+ 1
2
�t

vn+ 1
2
= vn + an

�t

2

vn+1 = vn+ 1
2
+ an+1

�t

2

Time-reversible and explicitly energy conserving
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What else?
Extending to non-standard models
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The Universe after Planck:
6 parameters to fit all data

ns = 0.9645 ⌧ = 0.079

�8 = 0.831

⌦b = 0.049 ⌦CDM = 0.265

⌦⇤ = 0.6844

Standard Cosmology after Planck
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The Universe after Planck:
6 parameters to fit all data

ns = 0.9645 ⌧ = 0.079

�8 = 0.831

⌦b = 0.049 ⌦CDM = 0.265

⌦⇤ = 0.6844

Standard ΛCDM cosmology is based on a series of assumptions:
- Cosmological Principle (homogeneity & isotropy);
- Gaussian and Adiabatic initial conditions;
- Dark Matter is Cold and Collisionless;
- Neutrinos are massless;
- Dark Energy is a Cosmological Constant;
- GR is the complete theory of gravity;

Standard Cosmology after Planck
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Starting point: 
observational evidence of an accelerated expansion

Can we explain this somehow?

The Dark Energy problem
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Starting point: 
observational evidence of an accelerated expansion

Can we explain this somehow?

“Until it is solved, 
the problem of the 
dark energy will be a 
roadblock on our 
path to a 
comprehensive 
physical theory”

S. Weinberg

The Dark Energy problem

mailto:marco.baldi5@unibo.it
mailto:marco.baldi5@unibo.it


Marco Baldi - Cosmological Simulations - marco.baldi5@unibo.it

Motivations for beyond-Lambda models
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Motivations for beyond-Lambda models
1) “Missing detection” problems

-No direct evidence of the existence of Dark Matter particles

-No direct evidence of inflation
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Motivations for beyond-Lambda models
1) “Missing detection” problems
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-No direct evidence of inflation

2) “Naturalness” problems
-Fine-tuning of cosmological parameters

-Coincidence problem
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Motivations for beyond-Lambda models
1) “Missing detection” problems

-No direct evidence of the existence of Dark Matter particles

-No direct evidence of inflation

2) “Naturalness” problems
-Fine-tuning of cosmological parameters

-Coincidence problem

3) Observational tensions
-Small-scale “crisis” of CDM

-H0 tension 
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Motivations for beyond-Lambda models
1) “Missing detection” problems

-No direct evidence of the existence of Dark Matter particles

-No direct evidence of inflation

2) “Naturalness” problems
-Fine-tuning of cosmological parameters

-Coincidence problem

3) Observational tensions
-Small-scale “crisis” of CDM

-H0 tension 

Riess et al. 2016

3.4 σ tension!
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Motivations for beyond-Lambda models
1) “Missing detection” problems

2) “Naturalness” problems

3) Observational tensions

-No direct evidence of the existence of Dark Matter particles

-No direct evidence of inflation

-Fine-tuning of cosmological parameters

-Coincidence problem

-Small-scale “crisis” of CDM

-H0 tension

- σ8 tension
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Motivations for beyond-Lambda models
1) “Missing detection” problems

2) “Naturalness” problems

3) Observational tensions

-No direct evidence of the existence of Dark Matter particles

-No direct evidence of inflation

-Fine-tuning of cosmological parameters

-Coincidence problem

-Small-scale “crisis” of CDM

-H0 tension

- σ8 tension

Planck15

Planck13

Simpson et al. 2016
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The Universe after Planck:
6 parameters to fit all data

ns = 0.9645 ⌧ = 0.079

�8 = 0.831

⌦b = 0.049 ⌦CDM = 0.265

⌦⇤ = 0.6844

Standard ΛCDM cosmology is based on a series of assumptions:
- Cosmological Principle;
- Gaussian and Adiabatic initial conditions;
- Dark Matter is Cold and Collisionless;
- Neutrinos are massless;
- Dark Energy is a Cosmological Constant;
- GR is the complete theory of gravity;

Testing the assumptions of the Standard Model
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Standard ΛCDM cosmology is based on a series of assumptions:
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- Dark Matter is Cold and Collisionless;
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dark energy  
models beyond  

the cosmological 
constant
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Classification of Dark Energy models

This will be just a purely phenomenological classification, based on 
the expected effects on structure formation and how these will 
affect N-body simulation methods.


For a more formal classification, see e.g.

Pourtsidou et al. (2013) 
Skordis et al. (2015)
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Classification of Dark Energy models
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time evolution
spatial 

fluctuations interactions

Λ ✘ ✘ ✘

Classification of Dark Energy models

mailto:marco.baldi5@unibo.it
mailto:marco.baldi5@unibo.it


Marco Baldi - Cosmological Simulations - marco.baldi5@unibo.it

time evolution
spatial 

fluctuations interactions

Λ ✘ ✘ ✘
Dynamical DE 

(DE parameterisations, 
Quintessence, 

k-essence)

✔ 
a dynamical (scalar) 
degree of freedom

✘ 
no clustering at 

sub-horizon scales

✘ 
minimally-coupled to 

matter fields

Classification of Dark Energy models
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time evolution
spatial 

fluctuations interactions

Λ ✘ ✘ ✘
Dynamical DE 

(DE parameterisations, 
Quintessence, 

k-essence)

✔ 
a dynamical (scalar) 
degree of freedom

✘ 
no clustering at 

sub-horizon scales

✘ 
minimally-coupled to 

matter fields

Clustering DE
(“cold” DE models, 
Unified DE models)

✔ 
a dynamical (scalar) 
degree of freedom

✔ 
small sound speed, 
clustering at sub-H

✘ 
minimally 

coupled to matter

Classification of Dark Energy models
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time evolution
spatial 

fluctuations interactions

Λ ✘ ✘ ✘
Dynamical DE 

(DE parameterisations, 
Quintessence, 

k-essence)

✔ 
a dynamical (scalar) 
degree of freedom

✘ 
no clustering at 

sub-horizon scales

✘ 
minimally-coupled to 

matter fields

Clustering DE
(“cold” DE models, 
Unified DE models)

✔ 
a dynamical (scalar) 
degree of freedom

✔ 
small sound speed, 
clustering at sub-H

✘ 
minimally 

coupled to matter

Interacting DE
(Coupled and Extended 

Quintessence, 
Modified Gravity)

✔ 
a dynamical (scalar) 
degree of freedom

✔ 
fluctuations sourced 
by the interaction

✔ 
non-minimally 

coupled to matter

Classification of Dark Energy models
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Interacting Dark Energy and structure formation
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An interaction between a matter field and a scalar field can be 
described by a source term in the respective continuity equations:

rµT
µ(�)
⌫ = �QT (DM)r⌫� rµT

µ(DM)
⌫ = +QT (DM)r⌫�

Interacting Dark Energy and structure formation
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An interaction between a matter field and a scalar field can be 
described by a source term in the respective continuity equations:

Interacting Dark Energy and structure formation

⇢̇DM + 3H⇢DM = +Q⇢DM�̇ �̈+ 3H�̇+
dV

d�
= �Q⇢DM
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An interaction between a matter field and a scalar field can be 
described by a source term in the respective continuity equations:

By perturbing these equations at linear order one obtains a 
dynamical equation for the field perturbations:

✓
@2

@t2
�r2

◆
�� =

dV

d�
(��) +Q�DM

Interacting Dark Energy and structure formation

⇢̇DM + 3H⇢DM = +Q⇢DM�̇ �̈+ 3H�̇+
dV

d�
= �Q⇢DM
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An interaction between a matter field and a scalar field can be 
described by a source term in the respective continuity equations:

By perturbing these equations at linear order one obtains a 
dynamical equation for the field perturbations:

✓
@2

@t2
�r2

◆
�� =

dV

d�
(��) +Q�DM

that in the so-called quasi-static limit (                                ) gives:@2��/@t2 ⌧ r2��

and assuming a flat potential (                         ):dV/d� ⌧ �DM

r2�� = �dV

d�
(��)�Q�DM

r2�� ⇡ �Q�DM ) �� ⇡ �Q�

Interacting Dark Energy and structure formation

⇢̇DM + 3H⇢DM = +Q⇢DM�̇ �̈+ 3H�̇+
dV

d�
= �Q⇢DM
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Interacting Dark Energy and structure formation
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�̈ + 2H �̇ � 3

2
⌦� = 0Q = 0

By combining this relation with the linear perturbations equations 
of the matter field (Amendola 2004), one obtains a modified 
version of the gravitational instability equation:

Interacting Dark Energy and structure formation
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�̈ + 2H �̇ � 3

2
⌦� = 0Q = 0

By combining this relation with the linear perturbations equations 
of the matter field (Amendola 2004), one obtains a modified 
version of the gravitational instability equation:

Q 6= 0 �̈ +
⇣
2H�2Q�̇

⌘
�̇ � 3

2
H

2
�
1 + 2Q2

�
⌦� = 0

Interacting Dark Energy and structure formation
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�̈ + 2H �̇ � 3

2
⌦� = 0Q = 0

By combining this relation with the linear perturbations equations 
of the matter field (Amendola 2004), one obtains a modified 
version of the gravitational instability equation:

Scalar fifth-forces are tightly constrained from solar system tests 
of gravity, need to allow for a non-universal coupling so that CDM 
is coupled and baryons are uncoupled (                            ):Qc 6= 0, Qb = 0

�̈c +
⇣
2H�2Q�̇

⌘
�̇c �

3

2
H

2
⇥�
1 + 2Q2

�
⌦c�c + ⌦b�b

⇤
= 0

�̈b + 2H �̇b �
3

2
H

2 [⌦c�c + ⌦b�b] = 0

Q 6= 0 �̈ +
⇣
2H�2Q�̇

⌘
�̇ � 3

2
H

2
�
1 + 2Q2

�
⌦� = 0

Interacting Dark Energy and structure formation
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This implies an effective violation of the Weak Equivalence Principle:

~aCDM = �~r�(1+2Q2)+2Q�̇~vCDM ~ab = �~r�

Interacting Dark Energy and structure formation
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This implies an effective violation of the Weak Equivalence Principle:

~aCDM = �~r�(1+2Q2)+2Q�̇~vCDM ~ab = �~r�

Interacting Dark Energy and structure formation

The extra force comes from the coupling between the two fields:

~a� = 2Q~r�� = �2Q2~r�
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This implies an effective violation of the Weak Equivalence Principle:

~aCDM = �~r�(1+2Q2)+2Q�̇~vCDM ~ab = �~r�

The term                    is called “friction term” and arises from 
momentum conservation:

2Q�̇~vCDM

d~p

dt
=

d(m(�)~v)

dt
= m(�)~a+

dm

d�
�̇~v

Interacting Dark Energy and structure formation

The extra force comes from the coupling between the two fields:

~a� = 2Q~r�� = �2Q2~r�
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coupled

m(�)

m(�)

G11

�1�̇~v1

�1�̇~v1

m(�)

m(�)

uncoupled

G

G

Standard Coupled Quintessence: interacting DM and non-interacting 
baryons:

Interacting Dark Energy and structure formation

~aDM = �~r�N � 2Q2~r�DM +Q�̇~vDM

~ab = �~r�N
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Particle-Mesh (for interacting DE)

In interacting DE the coupling determines two different gravitational 
forces for dark matter and baryons:

N-body algorithms for interacting Dark Energy
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Particle-Mesh (for interacting DE)
1) Assign mass to grid nodes for one 
species only, obtain density on the grid 

In interacting DE the coupling determines two different gravitational 
forces for dark matter and baryons:

N-body algorithms for interacting Dark Energy
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Very different effects at linear and non-linear scales
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An alternative approach to the Dark Energy problem is to modify 
General Relativity in the low curvature regime by changing the 
gravitational Action. One of the most popular models of this modified 
gravity approach is f(R):

S =
1

16⇡G

Z
d4x

p
�gf(R) + Sm(gµ⌫ , m)

Modified Gravity: f(R)
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By varying this Action with respect to the metric tensor, with a similar 
procedure as for the standard GR Action, one gets the f(R) field eqs:
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General Relativity in the low curvature regime by changing the 
gravitational Action. One of the most popular models of this modified 
gravity approach is f(R):

S =
1

16⇡G

Z
d4x

p
�gf(R) + Sm(gµ⌫ , m)

3⇤fR + fRR� 2f(R) = �8⇡G(⇢� 3p)

where we have defined fR ⌘ df/dR

trace

Modified Gravity: f(R)
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In GR one has                              so that               and   f(R) = R� 2⇤ fR = 1 ⇤fR = 0

On the contrary, if       is a function of     one has                   so that
      corresponds to a new propagating scalar degree of freedom.

fR R ⇤fR 6= 0
fR

Modified Gravity: f(R)
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A particularly relevant model of f(R) gravity is given by the choice 
(Hu & Sawicki 2007):

because this allows to reproduce exactly the background evolution 
of a ΛCDM cosmology by setting:

f(R) = R�m2 c1(R/m2)n

c2(R/m2)n + 1
m2 ⌘ 8⇡G⇢0

3

c1
c2

= 6
⌦⇤

⌦M

Modified Gravity: f(R)
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Trace of the modified Einstein equations:
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Trace of the modified Einstein equations:

3⇤fR + fRR� 2f(R) = �8⇡G(⇢� 3p)

By perturbing this equation at linear order (posing                           ):fR = f̄R + �fR

That in the quasi-static approximation becomes:

✓
@2

@t2
�r2

◆
�fR = �M2(fR)�fR +

8⇡G

3f̄R
�⇢M

r2�fR = M2(fR)�fR � 8⇡G

3f̄R
�⇢M

that is the same equation we saw for interacting dark energy. 
However, differently from the case of interacting Dark Energy, in f(R) 
one CANNOT assume 

M2(fR)�fR ⌧ �⇢M NOT  TRUE

Modified Gravity: f(R)
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Modified Gravity: f(R)

r2�fR = M2(fR)�fR � 8⇡G

3f̄R
�⇢M

if one can not neglect the                          term, the  equation is no 
longer linear and superposition principle does not hold.

M2(fR)�fR
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Modified Gravity: f(R)

r2�fR = M2(fR)�fR � 8⇡G

3f̄R
�⇢M

if one can not neglect the                          term, the  equation is no 
longer linear and superposition principle does not hold.

M2(fR)�fR

r2fR =
1

3c2
(�R� 8⇡G�⇢)

This can be rewritten as:

with the solution of the field configuration affecting structure formation 
through

r2� =
16⇡G

3
�⇢� 1

6
�R

�R = R̄(a)

0

@
s

f̄R(a)

fR
� 1

1

A ?(    )
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Modified Gravity: f(R)

If superposition principle does not hold, it is not possible to solve the 
equation using PM or Tree methods. Need to resort on the iterative 
Newton-Raphson approach (Newton-Gauss-Seidel relaxation method)

This has been implemented in several simulation codes after the first 
simulations performed by Oyaizu et al. 2008:

Ecosmog (Li et al. 2012) 
MG-Gadget (Puchwein et al. 2013) 
Isis (Llinares et al. 2014) 
MG-Arepo (Arnold et al. 2019)

r2fR =
1

3c2
(�R� 8⇡G�⇢)

mailto:marco.baldi5@unibo.it
mailto:marco.baldi5@unibo.it


Marco Baldi - Cosmological Simulations - marco.baldi5@unibo.it

The MG-Gadget code (Puchwein, MB, Springel 2013) is one of the 
available codes for cosmological N-body simulations in Modified 
Gravity cosmologies

N-body algorithms for MG

mailto:marco.baldi5@unibo.it
mailto:marco.baldi5@unibo.it


Marco Baldi - Cosmological Simulations - marco.baldi5@unibo.it

The MG-Gadget code (Puchwein, MB, Springel 2013) is one of the 
available codes for cosmological N-body simulations in Modified 
Gravity cosmologies

• The field equation                                                     is discretized in 
position space

r2fR =
1

3c2
(�R� 8⇡G�⇢)

N-body algorithms for MG

mailto:marco.baldi5@unibo.it
mailto:marco.baldi5@unibo.it


Marco Baldi - Cosmological Simulations - marco.baldi5@unibo.it

The MG-Gadget code (Puchwein, MB, Springel 2013) is one of the 
available codes for cosmological N-body simulations in Modified 
Gravity cosmologies

• The field equation                                                     is discretized in 
position space

r2fR =
1

3c2
(�R� 8⇡G�⇢)

• Equation solved using the iterative Newton-Gauss-Seidl relaxation 
scheme

N-body algorithms for MG

mailto:marco.baldi5@unibo.it
mailto:marco.baldi5@unibo.it


Marco Baldi - Cosmological Simulations - marco.baldi5@unibo.it

The MG-Gadget code (Puchwein, MB, Springel 2013) is one of the 
available codes for cosmological N-body simulations in Modified 
Gravity cosmologies

• The field equation                                                     is discretized in 
position space

r2fR =
1

3c2
(�R� 8⇡G�⇢)

• Equation solved using the iterative Newton-Gauss-Seidl relaxation 
scheme

• The tree nodes are used as the cells of an adaptive mesh

N-body algorithms for MG

mailto:marco.baldi5@unibo.it
mailto:marco.baldi5@unibo.it


Marco Baldi - Cosmological Simulations - marco.baldi5@unibo.it

The MG-Gadget code (Puchwein, MB, Springel 2013) is one of the 
available codes for cosmological N-body simulations in Modified 
Gravity cosmologies

• The field equation                                                     is discretized in 
position space

r2fR =
1

3c2
(�R� 8⇡G�⇢)

• Equation solved using the iterative Newton-Gauss-Seidl relaxation 
scheme

• The tree nodes are used as the cells of an adaptive mesh

N-body algorithms for MG

mailto:marco.baldi5@unibo.it
mailto:marco.baldi5@unibo.it


Marco Baldi - Cosmological Simulations - marco.baldi5@unibo.it

The MG-Gadget code (Puchwein, MB, Springel 2013) is one of the 
available codes for cosmological N-body simulations in Modified 
Gravity cosmologies

• The field equation                                                     is discretized in 
position space

r2fR =
1

3c2
(�R� 8⇡G�⇢)

• Equation solved using the iterative Newton-Gauss-Seidl relaxation 
scheme

• The tree nodes are used as the cells of an adaptive mesh

N-body algorithms for MG

mailto:marco.baldi5@unibo.it
mailto:marco.baldi5@unibo.it


Marco Baldi - Cosmological Simulations - marco.baldi5@unibo.it

The MG-Gadget code (Puchwein, MB, Springel 2013) is one of the 
available codes for cosmological N-body simulations in Modified 
Gravity cosmologies

• The field equation                                                     is discretized in 
position space

r2fR =
1

3c2
(�R� 8⇡G�⇢)

• Equation solved using the iterative Newton-Gauss-Seidl relaxation 
scheme

• The tree nodes are used as the cells of an adaptive mesh

• Employs multi-grid acceleration to achieve faster convergence

N-body algorithms for MG

mailto:marco.baldi5@unibo.it
mailto:marco.baldi5@unibo.it


Marco Baldi - Cosmological Simulations - marco.baldi5@unibo.it

The MG-Gadget code (Puchwein, MB, Springel 2013) is one of the 
available codes for cosmological N-body simulations in Modified 
Gravity cosmologies

• The field equation                                                     is discretized in 
position space

r2fR =
1

3c2
(�R� 8⇡G�⇢)

• Equation solved using the iterative Newton-Gauss-Seidl relaxation 
scheme

• The tree nodes are used as the cells of an adaptive mesh

• Employs multi-grid acceleration to achieve faster convergence

N-body algorithms for MG

• Once       is known,                  is also known, and the Poisson 
equation can be solved by adding up the standard and the MG 
contributions

fR �R(fR)
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Why
doing Cosmological Simulations
(for extended cosmological models)?
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Lensing power spectrum extracted from N-body simulations with a 
ray-tracing technique (Pace, MB, et al. 2014)
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Lensing power spectrum extracted from N-body simulations with a 
ray-tracing technique (Pace, MB, et al. 2014)

degeneracy 
with standard 

ΛCDM 
parameters

the lensing 
power 

spectrum at 
small scales 
breaks the 

non-linear 
effect of friction 

term
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The effect of Massive Neutrinos
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⌦⌫ =
⌃im⌫i

93.14h2eV
 MUST be there: ⌃im⌫ & 0.06eV
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Castorina et al. 2016

Free streaming 
suppresses structure 
at small scales
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[Courtesy C. Carbone]

Nonlinear suppression of the matter P(k) ~15% larger than linear 
predictions at k~1-2 h/Mpc (critical range of scales for WL surveys)

[see also Bird, Viel & Haehnelt 2012]

mν = 0.17; 0.3; 0.53 eV

The effect of Massive Neutrinos
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non-linear power spectrum halo mass function
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The deviations expected for a non-zero neutrino mass and for an f(R) 
theory of gravity are suppressed below observational resolution if both 
phenomena coexist  →  RISK OF MISINTERPRETING THE DATA!!!

Baldi et al. 2014

The f(R)-massive neutrinos degeneracy
MB et al. 2014
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Peel, MB et al., A&A 2018 (arXiv:1805:05146)

The f(R)-massive neutrinos degeneracy
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Summary and conclusions
• Cosmological simulations are a necessary tool to predict the 

properties and the evolution of cosmological observables


• Newtonian simulations can very well describe the evolution of the 
universe over a wide range of scales (large-scale relativistic effects 
can be included in post-processing for scales close to the horizon)


• Different methods have been developed to solve for the self-
gravitational evolution of a system of N particles representing (i.e. 
sampling) the cosmic density field: PM, Tree, TreePM, Multigrid


• These methods may need to be combined and /or modified to 
include additional physics beyond the standard LCDM model for 
which they have been developed, such as non-trivial Dark Energy 
and Modified Gravity models


• Extended simulations may be the only way to predict 
characteristic features of such models allowing to distinguish 
them from standard LCDM
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Thank you!
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