Symmetry resolved entanglement

Pasquale Calabrese SISSA-Trieste

EQF21, June 2021

Reduced density matrix and entanglement

Consider a system in a quantum state $|\psi\rangle$, $\rho = |\psi\rangle\langle\psi|$

$$\mathcal{H} = \mathcal{H}_A \otimes \mathcal{H}_B \qquad |\psi\rangle \neq |\psi_A\rangle \otimes |\psi_B\rangle$$

The reduced density matrix of A is $\rho_A = \text{Tr}_B |\psi\rangle\langle\psi|$

The entanglement entropy

$$S_A = -\operatorname{Tr}\left(\rho_A \log \rho_A\right)$$

measures the bipartite entanglement between A & B

We will also use the Rènyi entropies $S_n = \frac{1}{1-n} \log \operatorname{Tr} \rho_A^n$

Entanglement and symmetries

Let's assume that $|\psi\rangle$ is symmetric under the action of a charge Q, i.e $[\rho,Q]=0$ The charge is local: $Q=Q_A+Q_B$

$$[\rho,Q] = 0 \qquad \qquad [\rho_A,Q_A] = 0$$

$$\rho_A \text{ has a block diagonal form:}$$

$$\rho_A = \bigoplus_q \Pi_q \rho_A = \bigoplus_q [p(q)\rho_A(q)]$$
 with $p(q) = \text{Tr}(\Pi_q \rho_A)$

Symmetry resolved entanglement entropy:

$$S(q) = -\operatorname{Tr}[\rho_A(q)\log\rho_A(q)]$$

probability of being in the sector q

Entanglement and symmetries II

The symmetry resolved entanglement satisfies the sum rule

$$S = \sum_{q} p(q)S(q) - \sum_{q} p(q)\log(p(q)) \equiv S^{c} + S^{n}$$

S^c: Configurational entropy

S^n : Number entropy

FIG. S8. Total entropy partitioned The total von Neumann entanglement entropy $S_{\rm vN}$ for the half-system is shown as a function of time in an interacting system at strong disorder. The entropy is split up into $S_{\rm n}$ and $S_{\rm c}$. For visual

A. Lukin, M. Rispoli, R. Schittko, M. E. Tai, A. M. Kaufman, S. Choi, V. Khemani, J. Leonard, and M. Greiner, Probing entanglement in a many-body localized system, Science 364, 6437 (2019).

Entanglement and symmetries: results

Early work

N. Laflorencie and S. Rachel, J. Stat. Mech. (2014) P11013

SRE in **CFT**

- M. Goldstein and E. Sela, PRL 120, 200602 (2018)
- J.C. Xavier, F.C. Alcaraz, and G. Sierra, PRB 98, 041106 (2018)
- L. Capizzi, P. Ruggiero, and P. Calabrese, JSTAT (2020) 073101
- R. Bonsignori and P. Calabrese, JPA 54, 015005 (2020)
- B. Estienne et al, SciPost Phys. 10, 54 (2021)
- S. Murciano, J. Dubail, P. Calabrese, to appear

Relative entropy and distances:

- H.-H. Chen, arXiv:2104.03102
- L. Capizzi and P. Calabrese, ArXiv:2105.08596

Free QFT

S. Murciano, G. Di Giulio, and P. Calabrese, JHEP 08 (2020) 073

Disorder Systems

X. Turkeshi, P. Ruggiero, V. Alba, and P. Calabrese, PRB 102, 014455 (2020)

Holography

S. Zhao, C. Northe, and R. Meyer, arXiv:2012.11274

Negativity

- E. Cornfeld, M. Goldstein, and E. Sela, PRA 98, 032302 (2018)
- S. Murciano, R. Bonsignori, P. Calabrese, SciPost Phys. 10, 111 (2021)
- P. Calabrese, P. Zoller, B. Vermersch, R. Kueng, and B. Kraus, ArXiv:2103.07443

Lattice free fermions

- R. Bonsignori, P. Ruggiero, and P. Calabrese, JPA 52, 475302 (2019)
- M. T. Tan and S. Ryu, PRB 101, 235169 (2020)
- S. Fraenkel and M. Goldstein, JSTAT 033106 (2020)
- S. Murciano, P. Ruggiero, and P. Calabrese, JSTAT (2020) 083102

Integrability

Corner Transfer Matrix

- S. Murciano, G. Di Giulio, and P. Calabrese, SciPost Phys. 8, 046 (2020)
- P. Calabrese, M. Collura, G. Di Giulio, and S. Murciano, EPL 129, 60007 (2020)

Form Factor Bootstrap

- D. X. Horvath and P. Calabrese, JHEP 11 131 (2020)
- D. X. Horvath, L. Capizzi, and P. Calabrese, ArXiv:2103.03197
- D. X. Horvath, P. Calabrese, and O. A. Castro-Alvaredo, arXiv:2105.13982

Non-equilibrium and quantum quenches

- N. Feldman and M. Goldstein, PRB 100, 235146 (2019)
- G. Parez, R. Bonsignori and P. Calabrese, PRB 103, L041104 (2020)
- V. Vitale, A. Elben, R. Kueng, A. Neven, J. Carrasco, B. Kraus, P. Zoller,
- P. Calabrese, B. Vermersch, and M. Dalmonte, ArXiv:2101.07814
- S. Fraenkel and M. Goldstein, ArXiv:2105.00740
- G. Parez, R. Bonsignori and P. Calabrese, ArXiv:2106.13115

Topology

- E. Cornfeld, L. A. Landau, K. Shtengel, and E. Sela, PRB 99, 115429 (2019)
- K. Monkman and J. Sirker, arXiv:2005.13026
- D. Azses and E. Sela, arXiv:2008.09332

Entanglement and symmetries: results

Early work

N. Laflorencie and S. Rachel, J. Stat. Mech. (2014) P11013

SRE in **CFT**

- Goldstein and E. Sela, PRL 120, 200602 (2018)
- Xavier, F.C. Alcaraz, and G. Sierra, PRB 98, 041106 (2018)
- L. Capizzi, P. Ruggiero, and P. Calabrese, JSTAT (2020) 073101
- R. Bonsignori and P. Calabrese, JPA 54, 015005 (2020)
- B. Estienne et al, SciPost Phys. 10, 54 (2021)
- Murciano, J. Dubail, P. Calabrese, to appear

Relative entropy and distances:

- H.-H. Chen, arXiv:2104.03102
- L. Capizzi and P. Calabrese, ArXiv:2105.08596

Free QFT

S. Murciano, G. Di Giulio, and P. Calabrese, JHEP 08 (2020) 073

Disorder Systems

X. Turkeshi, P. Ruggiero, V. Alba, and P. Calabrese, PRB 102, 014455 (2020)

Holography

S. Zhao, C. Northe, and R. Meyer, arXiv:2012.11274

Negativity

- Cornfeld, M. Goldstein, and E. Sela, PRA 98, 032302 (2018)
- S. Murciano, R. Bonsignori, P. Calabrese, SciPost Phys. 10, 111 (2021)
- P. Calabrese, P. Zoller, B. Vermersch, R. Kueng, and B. Kraus, ArXiv:2103.07443

Lattice free fermions

- R. Bonsignori, P. Ruggiero, and P. Calabrese, JPA 52, 475302 (2019)
- M. T. Tan and S. Ryu, PRB 101, 235169 (2020)
- S. Fraenkel and M. Goldstein, JSTAT 033106 (2020)
- S. Murciano, P. Ruggiero, and P. Calabrese, JSTAT (2020) 083102

Non-equilibrium and quantum quenches

- N. Feldman and M. Goldstein, PRB 100, 235146 (2019)
- G. Parez, R. Bonsignori and P. Calabrese, PRB 103, L041104 (2020)
- V. Vitale, A. Elben, R. Kueng, A. Neven, J. Carrasco, B. Kraus, P. Zoller,
- P. Calabrese, B. Vermersch, and M. Dalmonte, ArXiv:2101.07814
- S. Fraenkel and M. Goldstein, ArXiv:2105.00740
- G. Parez, R. Bonsignori and P. Calabrese, ArXiv:2106.13115

Integrability

Corner Transfer Matrix

- S. Murciano, G. Di Giulio, and P. Calabrese, SciPost Phys. 8, 046 (2020)
- P. Calabrese, M. Collura, G. Di Giulio, and S. Murciano, EPL 129, 60007 (2020)

Form Factor Bootstrap

- D. X. Horvath and P. Calabrese, JHEP 11 131 (2020)
- D. X. Horvath, L. Capizzi, and P. Calabrese, ArXiv:2103.03197
- D. X. Horvath, P. Calabrese, and O. A. Castro-Alvaredo, arXiv:2105.13982

Topology

- E. Cornfeld, L. A. Landau, K. Shtengel, and E. Sela, PRB 99, 115429 (2019)
- K. Monkman and J. Sirker, arXiv:2005.13026
- D. Azses and E. Sela, arXiv:2008.09332

Entanglement entropy and path integral

PC, J Cardy 2004

The density matrix at temperature $1/\beta$ is

The trace sews together the edges a

 $\mathbf{A} = (u, v)$: $\rho_{\mathbf{A}}$ sews together only those points x which are not in \mathbf{A} , leaving an open cut at $\tau = 0$

Replicas and Riemann surfaces

PC, J Cardy 2004

$$S_A = -\operatorname{Tr}\left(\rho_A \log \rho_A\right) = -\lim_{n \to 1} \frac{\partial}{\partial n} \operatorname{Tr}(\rho_A^n)$$

For *n* integer, $Tr\rho_A^n$ is obtained by sewing cyclically *n* cylinders above.

This is the partition function on a *n*-sheeted Riemann surface

$${
m Tr}
ho_A^n=$$

Renyi entanglement entropies
$$S_n = \frac{1}{1-n} \operatorname{Tr} \rho_A^n$$

Riemann surfaces and CFT

This Riemann surface is mapped to the plane by

PC, J Cardy 2004

 $Tr\rho_A^n$ is equivalent to the 2-point function of twist fields

$$\operatorname{Tr} \rho_A^n = \langle \mathcal{T}_n(u) \, \bar{\mathcal{T}}_n(v) \rangle$$
 with scaling dimension $\left| \Delta_{\mathcal{T}_n} = \frac{c}{12} \left(n - \frac{1}{n} \right) \right|$

$$\Delta_{\mathcal{T}_n} = \frac{c}{12} \left(n - \frac{1}{n} \right)$$

U(I) Symmetry resolution in CFT

M. Goldstein and E. Sela, PRL 120, 200602 (2018)

Symmetry resolved Renyi:
$$S_n(q) \equiv \frac{1}{1-n} \log \operatorname{Tr} \rho_A^n(q)$$

It requires the resolution of the spectrum in Q

$$Z_n(\alpha) \equiv \text{Tr}\rho_A^n e^{iQ_A\alpha}$$

Introduce the charged moments:
$$Z_n(\alpha) \equiv \text{Tr} \rho_A^n e^{iQ_A\alpha}$$
 $Z_n(q) \equiv \text{Tr}(\Pi_q \, \rho_A^n) = \int_{-\pi}^{\pi} \frac{d\alpha}{2\pi} e^{-iq\alpha} Z_n(\alpha)$

$$S_n(q) = \frac{1}{1-n} \log \left[\frac{\mathcal{Z}_n(q)}{\mathcal{Z}_1(q)^n} \right], \qquad S_1(q) = -\partial_n \left[\frac{\mathcal{Z}_n(q)}{\mathcal{Z}_1(q)^n} \right]_{n=1}$$

 $p(q) = \mathcal{Z}_1(q)$

 $Z_n(\alpha)$ is the partition function in the presence of a charge flux.

The field takes a total phase α going through \mathcal{R}_n .

In CFT it is placed all in one sheet introducing the composite field:

$$x_1$$
 x_2
 x_1
 x_2
 x_3
 x_4
 x_4

$$\mathcal{T}_{n,\alpha}(x,\tau)\phi_i(x',\tau) = \begin{cases} \phi_{i+1}(x',\tau)e^{i\alpha\delta_{i,n}}\mathcal{T}_{n,\alpha}(x,\tau) & (x < x'), \\ \phi_{i}(x',\tau)\mathcal{T}_{n,\alpha}(x,\tau) & \text{otherwise.} \end{cases}$$

$$h_{n,\alpha} = h_n + \frac{h_\alpha}{n}$$

$$Z_n(\alpha) = c_{n,\alpha} \ell^{-\frac{c}{6}\left(n - \frac{1}{n}\right) - 2\frac{h_\alpha + \bar{h}_\alpha}{n}}$$

Symmetry resolution in CFT: compact boson

Action:
$$S_E[\varphi] = \frac{1}{8\pi K} \int d\tau dx \; \partial_\mu \varphi \partial^\mu \varphi$$
 Conserved charge $Q_A = \frac{1}{2\pi} \int_A \partial \varphi(x,0) dx$

$$h_{\alpha} = \bar{h}_{\alpha} = \frac{1}{2} \left(\frac{\alpha}{2\pi} \right)^{2} K$$

$$Z_{n}(\alpha) = c_{n,\alpha} \mathcal{E}^{-\frac{c}{6}(n - \frac{1}{n}) - \frac{2K}{n} \left(\frac{\alpha}{2\pi} \right)^{2}}$$

Fourier transform using saddle point

$$\mathcal{Z}_n(q) = c_n \mathcal{E}^{-\frac{c}{6}(n-\frac{1}{n})} \sqrt{\frac{n\pi}{2K \ln \ell + \gamma_n}} e^{\frac{n\pi^2(q - \langle Q_A \rangle)^2}{2K \ln \ell + \gamma_n}}$$

$$S_n(q) = S_n - \frac{1}{2} \log \left(\frac{2K}{\pi} \log \ell \right) + \frac{\log n}{2(1-n)} + o(\ell^0)$$

Entanglement equipartition: up to order o(1), the SR entanglement does not depend on the symmetry sector

Symmetry resolution in CFT: compact boson II

R. Bonsignori, P. Ruggiero, and P. Calabrese, JPA 52, 475302 (2019)

$$S_n(q) = S_n - \frac{1}{2} \log \left(\frac{2K}{\pi} \log \ell \right) + \frac{\log n}{2(1-n)} + o(\ell^0)$$

Q: Where the log log term ends up in the total entropy?

A: It is exactly canceled by the number entropy:

$$S = \sum_{q} p(q)S(q) - \sum_{q} p(q)\log(p(q)) \equiv S^{c} + S^{n}$$

$$S^{n} = \frac{1}{2} + \frac{1}{2} \ln \left(\frac{2K}{\pi} \ln \ell \right) + o(1)$$

Note: The number entropy satisfies $S^n \ll S \sim S(q)$, a fact valid much more generally

$$\Upsilon(n, lpha) = ni \int_{-\infty}^{\infty} dw [anh(\pi w) - anh(\pi nw + ilpha/2)] \ln rac{\Gamma(rac{1}{2} + iw)}{\Gamma(rac{1}{2} - iw)}$$

Fourier tranform + ratios for entropies

$$S_n(q) = S_n - \frac{1}{2} \ln \left(\frac{2}{\pi} \ln \delta_n L_k \right) + \frac{\ln n}{2(1-n)} + (q - \bar{q})^2 \pi^4 \frac{n(\gamma_2(1) - n\gamma_2(n))}{1-n} \frac{1}{\ln^2 \kappa_n L_k} + \cdots \right)$$

Equipartition is broken at order $(\log \ell)^{-2}$

2D free lattice QFT: dimensional reduction

S. Murciano, P. Ruggiero, and P. Calabrese, JSTAT (2020) 083102

Idea: reduce the initial 2D system into decoupled 1D ones in a mixed space-momentum representation

Fermions

Bosons

Resolution of non-abelian symmetries: WZW models

S. Murciano, J. Dubail, P. Calabrese, to appear

Consider a general non-abelian group G (of dimension d and volume Vol(G)) and the corresponding WZW model

$$\rho_A = \bigoplus_r [p(r)\rho_A(r)]$$
 r labels the irreducible representations of G, dim(r) its dimension

SU(2) done by Goldstein and Sela in 2018 paper using SU(2) algebra

Our Strategy (without mentioning many highly non trivial points and assumptions)

- Write the charged moments as a linear combination of the unspecialised characters
- Use their modular properties to compute the resolved partition functions, by identifying all states in a given representation of the group.
- The SR entropies are obtained integrating the group characters around all saddles (that are the elements of the center Z(G) (of order |Z(G)|)

Final Result

$$S_n^r(L) = S_n(L) - \frac{d}{2}\log(\log L) + 2\log\dim(r) - \log\frac{\text{Vol}(G)}{|Z(G)|} + \frac{d}{2}\left(-\log k + \frac{\log n}{1-n} + \log(2\pi^3)\right) + o(L^0)$$

Equipartition broken at order O(1)!!

SRE after a quantum quench

Prepare a system in a low-entangled initial state $|\psi_0\rangle$ and let it evolve unitarity $|\psi(t)\rangle = e^{iHt}|\psi_0\rangle$

Long story short: In integrable models the entanglement dynamics is captured by the quasiparticle picture

$$S = \int \frac{dk}{2\pi} h(k) \min[2v_k t, \mathcal{E}]$$

PC & Cardy, 2005 + Alba & PC 2017

G. Parez, R. Bonsignori and P. Calabrese, PRB 103, L041104 (2020)

$$\log Z_n(\alpha) = i\langle Q_A \rangle \alpha + \int \frac{dk}{2\pi} f_{n,\alpha}(k) \min[2v_k t, \ell],$$

but the kernel $f_{n,\alpha}(k)$ is difficult to compute for generic model, while free is possible

FIG. 1. The time evolution of the charged moments $Z_n(\alpha)$ after a quench from the Néel state in the free fermion model

SRE after a quantum quench II

G. Parez, R. Bonsignori and P. Calabrese, PRB 103, L041104 (2020)

Some general features in charge space:

Obline Delay time $t_D \propto |\Delta q|$ $t_D = \pi \frac{|\Delta q|}{4} \quad \text{for free fermions}$

The time needed to change the charge of an amount $|\Delta q|$ within A

 \bigcirc Equipartition for small $|\Delta q|$

$$S_n(q) = S_n - \frac{\Delta q^2}{4(1-n)} \left\{ \frac{1}{\mathcal{J}_n} - \frac{n}{\mathcal{J}_1} \right\}$$

Number entropy

$$S^n \simeq \frac{1}{2} \log t$$

Application to ion-trap experiment: SR dynamical purification

V. Vitale, A. Elben, R. Kueng, A. Neven, J. Carrasco, B. Kraus, P. Zoller, P. Calabrese, B. Vermersch, and M. Dalmonte, ArXiv:2101.07814

Hamiltonian + dissipative dynamics

$$\partial_t \rho = -\frac{i}{\hbar} [H, \rho] + \sum_j \gamma \left[b_j \rho b_j^{\dagger} + b_j^{\dagger} \rho b_j - \frac{1}{2} \{ b_j b_j^{\dagger} + n_j, \rho \} \right]$$

Recap: - Both dynamics leads to entropy growth (entanglement and total)

- The total entropy grows, purity reduces

Analysis of experimental results:

Some sectors purifies at intermediate times

A general phenomenon that can be easily shown in perturbation theory in γ

Mixed state entanglement: Partial transpose and negativity

Q: what is the entanglement in a mixed state?

$$|e_k^1\rangle$$
 and $|e_l^2\rangle$ bases of A_1 and A_2

$$\rho_{A} = \sum_{ijkl} \langle e_{i}^{1}, e_{j}^{2} | \rho_{A} | e_{k}^{1}, e_{l}^{2} \rangle | e_{i}^{1}, e_{j}^{2} \rangle \langle e_{k}^{1}, e_{l}^{2} |$$

$$\rho_{A}^{T_{1}} = \sum_{ijkl} \langle e_{i}^{1}, e_{j}^{2} | \rho_{A} | e_{i}^{1}, e_{l}^{2} \rangle | e_{i}^{1}, e_{j}^{2} \rangle \langle e_{i}^{1}, e_{l}^{2} |$$

$$(|e_i^1, e_j^2\rangle \langle e_k^1, e_l^2|)^{T_1} \equiv |e_k^1, e_j^2\rangle \langle e_i^1, e_l^2|$$

PPT criterion:

If $\rho_A^{T_1}$ has negative eigenvalues ρ_A is entangled

Peres, 1996

The Negativity $= \mathcal{N} = \frac{\text{Tr} |\rho_A^{T_1}| - 1}{2}$ measure how much the eigenvalues of $\rho_A^{T_1}$

are negative and it is an entanglement monotone

Vidal Werner 2002

Replica trick:
$$\text{Tr} | \rho_A^{T_1} | = \lim_{n \to 1/2} \text{Tr} (\rho_A^{T_1})^{2n}$$

Intermezzo: "Negativity" in experiments

The negativity is difficult to measure experimentally, but the moments of the partial transpose p_n can

- E. Cornfeld, M. Goldstein, and E. Sela, PRA 98, 032302 (2018)
- J. Gray, L. Banchi, A. Bayat, and S. Bose, Phys. Rev. Lett. 121, 150503 (2018)
- A. Elben, R. Kueng, H.-Y. Huang, R. van Bijnen, C. Kokail, M. Dalmonte, P. Calabrese, B. Kraus, J. Preskill, P. Zoller, and B. Vermersch, PRL 125, 200501 (2020)

In Elben et al, PRL 2020 p_n are obtained by performing local random measurements and post-processing using the classical shadows framework

p₃-PPT condition: if $p_3 < p_2^2$, then PPT is violated and there is entanglement

Generalizations

A.Neven, J. Carrasco, V. Vitale, C. Kokail, A. Elben, M. Dalmonte, P. Calabrese, P. Zoller, B. Vermersch, R. Kueng, and B. Kraus, ArXiv:2103.07443

- \bigcirc D_n conditions: generalized conditions, involving higher moments
- Symmetry resolution of p₃-PPT:
 - Allow to understand in which sector negative eigenvalues are
 - More sensitive to small negative eigenvalues

a)

Fermionic partial transpose

Occupation number basis: $|\{n_j\}_{j\in A_1}, \{n_j\}_{j\in A_2}\rangle = (f_{m_1}^{\dagger})^{n_{m_1}} \dots (f_{m_{\ell_1}}^{\dagger})^{n_{m_{\ell_1}}} (f_{m'_{\ell_1}}^{\dagger})^{n_{m'_{\ell_1}}} \dots (f_{m'_{\ell_n}}^{\dagger})^{n_{m'_{\ell_2}}} |0\rangle$

Fermionic partial transpose:
$$(|\{n_j\}_{A_1}, \{n_j\}_{A_2}) \langle \{\bar{n}_j\}_{A_1}, \{\bar{n}_j\}_{A_2}|)^{R_1} = (-1)^{\phi(\{n_j\}, \{\bar{n}_j\})} (|\{\bar{n}_j\}_{A_1}, \{n_j\}_{A_2}) \langle \{n_j\}_{A_1}, \{\bar{n}_j\}_{A_2}|)$$

$$\rho_A^{R_1}$$
 non hermitian

$$\mathcal{N} = \frac{\text{Tr} |\rho_A^{R_1}| - 1}{2} = \frac{\text{Tr} \sqrt{\rho_A^{R_1} (\rho_A^{R_1})^{\dagger}} - 1}{2} = \lim_{n \to 1/2} \frac{\text{Tr} (\rho_A^{R_1} (\rho_A^{R_1})^{\dagger})^n - 1}{2}$$

Fermionic negativity (no negative eigenvalues, but entanglement monotone)

$$\rho_A^{T_1} = \frac{e^{i\pi/4}\rho_A^{R_1} + e^{-i\pi/4}(\rho_A^{R_1})^{\dagger}}{\sqrt{2}}$$

$$\operatorname{Tr}(\rho_A^{T_1})^{2n}$$

$$\sum \text{ all spin structures}$$

$$\rho_A^{T_1} \text{ sum of 2 Gaussian}$$

$$\operatorname{Tr}(\rho_A^{R_1}(\rho_A^{R_1})^{\dagger})^n$$
only 1 cycle
 $\rho_A^{R_1}$ Gaussian

Symmetry Resolution: example

a particle in one out of three boxes, $A = A_1 \cup A_2, B$,

$$|\Psi\rangle = \alpha |100\rangle + \beta |010\rangle + \gamma |001\rangle$$

$$\rho_A = \begin{pmatrix} |00\rangle & |01\rangle & |10\rangle & |11\rangle & \text{partial trans} \\ 0 & 0 & 0 & 0 \\ 0 & |\beta|^2 & \alpha^*\beta & 0 \\ 0 & \beta^*\alpha & |\alpha|^2 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

$$\rho_A^{R_1} = \begin{pmatrix} |\gamma|^2 & 0 & 0 & i\alpha\beta^* \\ 0 & |\beta|^2 & 0 & 0 \\ 0 & 0 & |\alpha|^2 & 0 \\ i\beta\alpha^* & 0 & 0 & 0 \end{pmatrix}$$

block-diagonal structure

$$ho_A^{R_1}\cong \left(|lpha|^2
ight)_{q=-1}\oplus \left(egin{array}{cc} |\gamma|^2 & ilphaeta^* \ ietalpha^* & 0 \end{array}
ight)_{q=0}\oplus \left(|eta|^2
ight)_{q=1}$$

$$Q=Q_{A_2}-Q_{A_1}^{R_1}$$

block-diagonal structure

$$\rho_A \cong (|\gamma|^2)_{\tilde{q}=0} \oplus \begin{pmatrix} |\beta|^2 & \alpha\beta^* \\ \beta\alpha^* & |\alpha|^2 \end{pmatrix}_{\tilde{q}=1} \oplus (0)_{\tilde{q}=2}$$

charge imbalance resolved negativity

$$\mathcal{N}(q) = \frac{\text{Tr}|(\rho_A^{R_1}(q))| - 1}{2}, \qquad \rho_A^{R_1}(q) = \frac{\mathcal{P}_q \rho_A^{R_1} \mathcal{P}_q}{\text{Tr}(\mathcal{P}_q \rho_A^{R_1})}$$

$$\mathcal{N} = \sum p(q)\mathcal{N}(q), \qquad p(q) = \text{Tr}(\mathcal{P}_q \rho_A^{R_1})$$

E. Cornfeld, M. Goldstein, and E. Sela, PRA 98, 032302 (2018)

Some results: Negativity equipartition

S. Murciano, R. Bonsignori, P. Calabrese, SciPost Phys 10, 111(2021)

Main message:

The symmetry resolution of entanglement measures provides a fine structure of the entanglement content of physical states of extended quantum systems that is not accessible from the measure of the total entanglement

Some features:

- Measurable experimentally (actually already measured!)
- Easy to compute via charged moments
- Relation to charge statistics, entanglement Hamiltonian,

THANK YOU