Symmetry resolved entanglement

Pasquale Calabrese

SISSA-Trieste

EQF2I, June 202I

Reduced density matrix and entanglement

Consider a system in a quantum state $|\psi\rangle, \quad \rho=|\psi\rangle\langle\psi|$

$$
\mathscr{H}=\mathscr{H}_{A} \otimes \mathscr{H}_{B} \quad|\psi\rangle \neq\left|\psi_{A}\right\rangle \otimes\left|\psi_{B}\right\rangle
$$

The reduced density matrix of A is $\rho_{A}=\operatorname{Tr}_{B}|\psi\rangle\langle\psi|$
The entanglement entropy

$$
S_{A}=-\operatorname{Tr}\left(\rho_{A} \log \rho_{A}\right)
$$

measures the bipartite entanglement between A \& B
We will also use the Rènyi entropies $S_{n}=\frac{1}{1-n} \log \operatorname{Tr} \rho_{A}^{n}$

Entanglement and symmetries

Let's assume that $|\psi\rangle$ is symmetric under the action of a charge Q , i.e $[\rho, Q]=0$ The charge is local: $Q=Q_{A}+Q_{B}$
$[\rho, Q]=0 \xrightarrow{\mathrm{Tr}_{B}}\left[\rho_{A}, Q_{A}\right]=0$
ρ_{A} has a block diagonal form:

$$
\rho_{A}=\oplus_{q} \Pi_{q} \rho_{A}=\oplus_{q}\left[p(q) \rho_{A}(q)\right] \quad \text { with } \quad p(q)=\operatorname{Tr}\left(\Pi_{q} \rho_{A}\right)
$$

Symmetry resolved entanglement entropy:

$$
S(q)=-\operatorname{Tr}\left[\rho_{A}(q) \log \rho_{A}(q)\right]
$$

Entanglement and symmetries II

The symmetry resolved entanglement satisfies the sum rule

$$
S=\sum_{q} p(q) S(q)-\sum_{q} p(q) \log (p(q)) \equiv S^{c}+S^{n}
$$

S^{c} : Configurational entropy
S^{n} : Number entropy

FIG. S8. Total entropy partitioned The total von Neumann entanglement entropy S_{vN} for the half-system is shown as a function of time in an interacting system at strong disorder. The entropy is split up into S_{n} and S_{c}. For visual

A. Lukin, M. Rispoli, R. Schittko, M. E. Tai, A. M. Kaufman, S. Choi, V. Khemani, J. Leonard, and M. Greiner, Probing entanglement in a many-body localized system, Science 364, 6437 (2019).

Entanglement and symmetries: results

SRE in CFT

M. Goldstein and E. Sela, PRL 120, 200602 (2018) J.C. Xavier, F.C. Alcaraz, and G. Sierra, PRB 98, 041106 (2018) L. Capizzi, P. Ruggiero, and P. Calabrese, JSTAT (2020) 073101
R. Bonsignori and P. Calabrese, JPA 54, 015005 (2020)
B. Estienne et al, SciPost Phys. 10, 54 (2021)
S. Murciano, J. Dubail, P. Calabrese, to appear

Relative entropy and distances:
H.-H. Chen, arXiv: 2104.03102
L. Capizzi and P. Calabrese, ArXiv:2105.08596

Free QFT

S. Murciano, G. Di Giulio, and P. Calabrese, JHEP 08 (2020) 073

Holography

S. Zhao, C. Northe, and R. Meyer, arXiv:2012.11274

Negativity

E. Cornfeld, M. Goldstein, and E. Sela, PRA 98, 032302 (2018) S. Murciano, R. Bonsignori, P. Calabrese, SciPost Phys. 10, 111 (2021) P. Calabrese, P. Zoller, B. Vermersch, R. Kueng, and B. Kraus, ArXiv:2103.07443

Lattice free fermions

R. Bonsignori, P. Ruggiero, and P. Calabrese, JPA 52, 475302 (2019) M. T. Tan and S. Ryu, PRB 101, 235169 (2020)
S. Fraenkel and M. Goldstein, JSTAT 033106 (2020)
S. Murciano, P. Ruggiero, and P. Calabrese, JSTAT (2020) 083102

Integrability

Corner Transfer Matrix
S. Murciano, G. Di Giulio, and P. Calabrese, SciPost Phys. 8, 046 (2020)
P. Calabrese, M. Collura, G. Di Giulio, and S. Murciano, EPL 129, 60007 (2020) Form Factor Bootstrap
D. X. Horvath and P. Calabrese, JHEP 11131 (2020)
D. X. Horvath, L. Capizzi, and P. Calabrese, ArXiv:2103.03197
D. X. Horvath, P. Calabrese, and O. A. Castro-Alvaredo, arXiv:2105.13982

Non-equilibrium and quantum quenches

N. Feldman and M. Goldstein, PRB 100, 235146 (2019) G. Parez, R. Bonsignori and P. Calabrese, PRB 103, L041104 (2020)
V. Vitale, A. Elben, R. Kueng, A. Neven, J. Carrasco, B. Kraus, P. Zoller,
P. Calabrese, B. Vermersch, and M. Dalmonte, ArXiv:2101.07814
S. Fraenkel and M. Goldstein, ArXiv:2105.00740
G. Parez, R. Bonsignori and P. Calabrese, ArXiv:2106.13115

Topology

E. Cornfeld, L. A. Landau, K. Shtengel, and E. Sela, PRB 99, 115429 (2019)
K. Monkman and J. Sirker, arXiv:2005.13026
D. Azses and E. Sela, arXiv:2008.09332

Entanglement and symmetries: results

SRE in CFT

Goldstein and E. Sela, PRL 120, 200602 (2018)
Xavier, F.C. Alcaraz, and G. Sierra, PRB 98, 041106 (2018) Capizzi, P. Ruggiero, and P. Calabrese, JSTAT (2020) 073101
R. Bonsignori and P. Calabrese, JPA 54, 015005 (2020)
B. Estienne et al, SciPost Phys. 10, 54 (2021)

Murciano, J. Dubail, P. Calabrese, to appear
Relative entropy and distances:
H.-H. Chen, arXiv: 2104.03102
L. Capizzi and P. Calabrese, ArXiv:2105.08596

Free QFT

S. Murciano, G. Di Giulio, and P. Calabrese, JHEP 08 (2020) 073

Holography

S. Zhao, C. Northe, and R. Meyer, arXiv:2012.11274

Disorder Systems

X. Turkeshi, P. Ruggiero, V. Alba, and P. Calabrese, PRB 102, 014455 (2020)

Negativity

Cornfeld, M. Goldstein, and E. Sela, PRA 98, 032302 (2018) Murciano, R. Bonsignori, P. Calabrese, SciPost Phys. 10, 111 (2021) P. Calabrese, P. Zoller, B. Vermersch, R. Kueng, and B. Kraus, ArXiv:2103.07443

Lattice free fermions

R. Bonsignori, P. Ruggiero, and P. Calabrese, JPA 52, 475302 (2019) M. T. Tan and S. Ryu, PRB 101, 235169 (2020) S. Fraenkel and M. Goldstein, JSTAT 033106 (2020) S. Murciano, P. Ruggiero, and P. Calabrese, JSTAT (2020) 083102

Integrability

Corner Transfer Matrix
S. Murciano, G. Di Giulio, and P. Calabrese, SciPost Phys. 8, 046 (2020)
P. Calabrese, M. Collura, G. Di Giulio, and S. Murciano, EPL 129, 60007 (2020) Form Factor Bootstrap
D. X. Horvath and P. Calabrese, JHEP 11131 (2020)
D. X. Horvath, L. Capizzi, and P. Calabrese, ArXiv:2103.03197
D. X. Horvath, P. Calabrese, and O. A. Castro-Alvaredo, arXiv:2105.13982

Non-equilibrium and quantum quenches

N. Feldman and M. Goldstein, PRB 100, 235146 (2019)
G. Parez, R. Bonsignori and P. Calabrese, PRB 103, L041104 (2020)
V. Vitale, A. Elben, R. Kueng, A. Neven, J. Carrasco, B. Kraus, P. Zoller,
P. Calabrese, B. Vermersch, and M. Dalmonte, ArXiv:2101.07814
S. Fraenkel and M. Goldstein, ArXiv:2105.00740
G. Parez, R. Bonsignori and P. Calabrese, ArXiv:2106.13115

Topology

E. Cornfeld, L. A. Landau, K. Shtengel, and E. Sela, PRB 99, 115429 (2019)
K. Monkman and J. Sirker, arXiv:2005.13026
D. Azses and E. Sela, arXiv:2008.09332

Entanglement entropy and path integral

The density matrix at temperature $1 / \beta$ is

$\mathrm{A}=(u, v): \rho_{\mathrm{A}}$ sews together only those points x which are not in A, leaving an open cut at $\tau=0$

Replicas and Riemann surfaces

$$
S_{A}=-\operatorname{Tr}\left(\rho_{A} \log \rho_{A}\right)=-\lim _{n \rightarrow 1} \frac{\partial}{\partial n} \operatorname{Tr}\left(\rho_{A}^{n}\right)
$$

For n integer, $\operatorname{Tr} \rho_{A}^{n}$ is obtained by sewing cyclically n cylinders above.
This is the partition function on a n-sheeted Riemann surface

Renyi entanglement entropies $S_{n}=\frac{1}{1-n} \operatorname{Tr} \rho_{A}^{n}$

Riemann surfaces and CFT

This Riemann surface is mapped to the plane by

$$
w \rightarrow \zeta=\frac{w-u}{w-v} ; \zeta \rightarrow z=\zeta^{1 / n} \Rightarrow w \rightarrow z=\left(\frac{w-u}{w-v}\right)^{1 / n}
$$

$\operatorname{Tr} \rho_{A}^{n}$ is equivalent to the 2-point function of twist fields
$\operatorname{Tr} \rho_{A}^{n}=\left\langle\mathcal{T}_{n}(u) \overline{\mathcal{T}}_{n}(v)\right\rangle$ with scaling dimension $\Delta_{\mathcal{T}_{n}}=\frac{c}{12}\left(n-\frac{1}{n}\right)$

$\mathrm{U}(\mathrm{I})$ Symmetry resolution in CFT

Symmetry resolved Renyi: $\quad S_{n}(q) \equiv \frac{1}{1-n} \log \operatorname{Tr} \rho_{A}^{n}(q)$
It requires the resolution of the spectrum in Q

Introduce the charged moments:
$Z_{n}(\alpha) \equiv \operatorname{Tr} \rho_{A}^{n} e^{i Q_{A} \alpha}$

$$
\mathcal{Z}_{n}(q) \equiv \operatorname{Tr}\left(\Pi_{q} \rho_{A}^{n}\right)=\int_{-\pi}^{\pi} \frac{d \alpha}{2 \pi} e^{-i q \alpha} Z_{n}(\alpha)
$$

$$
S_{n}(q)=\frac{1}{1-n} \log \left[\frac{\mathcal{Z}_{n}(q)}{\mathcal{Z}_{1}(q)^{n}}\right],
$$

$$
S_{1}(q)=-\partial_{n}\left[\frac{\mathcal{Z}_{n}(q)}{\mathcal{Z}_{1}(q)^{n}}\right]_{n=1}
$$

$$
p(q)=\mathcal{Z}_{1}(q)
$$

$Z_{n}(\alpha)$ is the partition function in the presence of a charge flux.
The field takes a total phase α going through \mathscr{R}_{n}. In CFT it is placed all in one sheet introducing the composite field:

$$
\mathcal{T}_{n, \alpha}(x, \tau) \phi_{i}\left(x^{\prime}, \tau\right)=\left\{\begin{array}{lr}
\phi_{i+1}\left(x^{\prime}, \tau\right) e^{i \alpha \delta_{i, i}} \mathcal{T}_{n, \alpha}(x, \tau) & \left(x<x^{\prime}\right) \\
\phi_{i}\left(x^{\prime}, \tau\right) \mathcal{T}_{n, \alpha}(x, \tau) & \text { otherwise }
\end{array}\right.
$$

$\square Z_{n}(\alpha)=\left\langle\mathcal{T}_{n, \alpha}(\ell, 0) \tilde{\mathcal{T}}_{n, \alpha}(0,0)\right\rangle \square h_{n, \alpha}=h_{n}+\frac{h_{\alpha}}{n} \square Z_{n}(\alpha)=c_{n, \alpha} \ell^{-\frac{c}{6}\left(n-\frac{1}{n}\right)-2 \frac{h_{\alpha}+\bar{h}_{\alpha}}{n}}$

Symmetry resolution in CFT: compact boson

Action: $\mathcal{S}_{E}[\varphi]=\frac{1}{8 \pi K} \int d \tau d x \partial_{\mu} \varphi \partial^{\mu} \varphi \quad$ Conserved charge $Q_{A}=\frac{1}{2 \pi} \int_{A} \partial \varphi(x, 0) d x \square e^{i \alpha Q_{A}}=e^{i \frac{\alpha}{2 \pi} \varphi(u, 0)} e^{-i \frac{\alpha}{2 \pi} \varphi(v, 0)}$

$$
h_{\alpha}=\bar{h}_{\alpha}=\frac{1}{2}\left(\frac{\alpha}{2 \pi}\right)^{2} K \quad Z_{n}(\alpha)=c_{n, \alpha} \ell^{-\frac{c}{6}\left(n-\frac{1}{n}\right)-\frac{2 K}{n}\left(\frac{\alpha}{2 \pi}\right)^{2}}
$$

Fourier transform using saddle point

$$
\mathscr{Z}_{n}(q)=c_{n} \ell^{-\frac{c}{6}\left(n-\frac{1}{n}\right)} \sqrt{\frac{n \pi}{2 K \ln \ell+\gamma_{n}}} e^{\frac{n \pi^{2}\left(q-\left\langle Q_{A}\right\rangle\right)^{2}}{2 K \ln \ell+\gamma_{n}}}
$$

$$
S_{n}(q)=S_{n}-\frac{1}{2} \log \left(\frac{2 K}{\pi} \log \ell\right)+\frac{\log n}{2(1-n)}+o\left(\ell^{0}\right)
$$

Entanglement equipartition: up to order $o(1)$, the SR entanglement does not depend on the symmetry sector

Symmetry resolution in CFT: compact boson II

R. Bonsignori, P. Ruggiero, and P. Calabrese, JPA 52, 475302 (2019)

$$
S_{n}(q)=S_{n}-\frac{1}{2} \log \left(\frac{2 K}{\pi} \log \ell\right)+\frac{\log n}{2(1-n)}+o\left(\ell^{0}\right)
$$

Q: Where the log log term ends up in the total entropy?
A: It is exactly canceled by the number entropy:

$$
\begin{gathered}
S=\sum_{q} p(q) S(q)-\sum_{q} p(q) \log (p(q)) \equiv S^{c}+S^{n} \\
S^{n}=\frac{1}{2}+\frac{1}{2} \ln \left(\frac{2 K}{\pi} \ln \ell\right)+o(1)
\end{gathered}
$$

Note: The number entropy satisfies $S^{n} \ll S \sim S(q)$, a fact valid much more generally

Lattice free fermions

$$
H=-\sum_{i=-\infty}^{\infty}\left[c_{i}^{\dagger} c_{i+1}+c_{i+1}^{\dagger} c_{i}-2 h\left(c_{i}^{\dagger} c_{i}-\frac{1}{2}\right)\right]
$$

Using Fisher Hartwig techniques:

$$
\begin{gathered}
\ln Z_{n}^{(0)}(\alpha)=i \alpha \frac{k_{F} \ell}{\pi}-\left[\frac{1}{6}\left(n-\frac{1}{n}\right)+\frac{2}{n}\left(\frac{\alpha}{2 \pi}\right)^{2}\right] \ln L_{k}+\Upsilon(n, \alpha) \\
\Upsilon(n, \alpha)=n i \int_{-\infty}^{\infty} d w[\tanh (\pi w)-\tanh (\pi n w+i \alpha / 2)] \ln \frac{\Gamma\left(\frac{1}{2}+i w\right)}{\Gamma\left(\frac{1}{2}-i w\right)}
\end{gathered}
$$

R. Bonsignori, P. Ruggiero, and P. Calabrese, JPA 52, 475302 (2019)

Fourier tranform + ratios for entropies
$S_{n}(q)=S_{n}-\frac{1}{2} \ln \left(\frac{2}{\pi} \ln \delta_{n} L_{k}\right)+\frac{\ln n}{2(1-n)}+(q-\bar{q})^{2} \pi^{4} \frac{n\left(\gamma_{2}(1)-n \gamma_{2}(n)\right)}{1-n} \frac{1}{\ln ^{2} \kappa_{n} L_{k}}+\cdots$

2D free lattice QFT: dimensional reduction

S. Murciano, P. Ruggiero, and P. Calabrese, JSTAT (2020) 083102

Idea: reduce the initial 2D system into decoupled 1D ones in a mixed space-momentum representation

Fermions

Bosons

Resolution of non-abelian symmetries:WZW models

S. Murciano, J. Dubail, P. Calabrese, to appear

Consider a general non-abelian group G (of dimension d and volume $\operatorname{Vol}(G)$) and the corresponding WZW model $\rho_{A}=\bigoplus_{r}\left[p(r) \rho_{A}(r)\right] \quad r$ labels the irreducible representations of $\mathrm{G}, \operatorname{dim}(r)$ its dimension
$S U(2)$ done by Goldstein and Sela in 2018 paper using $S U(2)$ algebra
Our Strategy (without mentioning many highly non trivial points and assumptions)

- Write the charged moments as a linear combination of the unspecialised characters
- Use their modular properties to compute the resolved partition functions, by identifying all states in a given representation of the group.
- The SR entropies are obtained integrating the group characters around all saddles (that are the elements of the center $Z(G)$ (of order $|Z(G)|)$

Final Result

$$
S_{n}^{r}(L)=S_{n}(L)-\frac{d}{2} \log (\log L)+2 \log \operatorname{dim}(r)-\log \frac{\operatorname{Vol}(G)}{|Z(G)|}+\frac{d}{2}\left(-\log k+\frac{\log n}{1-n}+\log \left(2 \pi^{3}\right)\right)+o\left(L^{0}\right)
$$

Equipartition broken at order $\mathrm{O}(1)$!!

SRE after a quantum quench

Prepare a system in a low-entangled initial state $\left|\psi_{0}\right\rangle$ and let it evolve unitarity $|\psi(t)\rangle=e^{i H t}\left|\psi_{0}\right\rangle$
Long story short: In integrable models the entanglement dynamics is captured by the quasiparticle picture

$$
S=\int \frac{d k}{2 \pi} h(k) \min \left[2 v_{k} t, \ell\right]
$$

PC \& Cardy, 2005 + Alba \& PC 2017

Adapting the QP picture to the charged moments, we conjecture for a general integrable model
G. Parez, R. Bonsignori and P. Calabrese, PRB 103, L041104 (2020)

$$
\log Z_{n}(\alpha)=i\left\langle Q_{A}\right\rangle \alpha+\int \frac{d k}{2 \pi} f_{n, \alpha}(k) \min \left[2 v_{k} t, \ell\right],
$$

but the kernel $f_{n, \alpha}(k)$ is difficult to compute for generic model, while free is possible

FIG. 1. The time evolution of the charged moments $Z_{n}(\alpha)$ after a quench from the Néel state in the free fermion model

SRE after a quantum quench II

G. Parez, R. Bonsignori and P. Calabrese, PRB 103, L041104 (2020)

Some general features in charge space:Delay time $\mathrm{t}_{\mathrm{D}} \propto|\Delta \mathrm{q}|$

$$
t_{D}=\pi \frac{|\Delta q|}{4} \quad \text { for free fermions }
$$

The time needed to change the charge of an amount $|\Delta q|$ within AEquipartition for small | $\Delta \mathrm{q} \mid$

$$
S_{n}(q)=S_{n}-\frac{\Delta q^{2}}{4(1-n)}\left\{\frac{1}{\mathcal{J}_{n}}-\frac{n}{\mathcal{J}_{1}}\right\}
$$

O Number entropy

$$
S^{n} \simeq \frac{1}{2} \log t
$$

Application to ion-trap experiment: SR dynamical purification

V. Vitale, A. Elben, R. Kueng, A. Neven, J. Carrasco, B. Kraus, P. Zoller, P. Calabrese, B. Vermersch, and M. Dalmonte, ArXiv:2101.07814

Hamiltonian + dissipative dynamics

$$
\partial_{t} \rho=-\frac{i}{\hbar}[H, \rho]+\sum_{j} \gamma\left[b_{j} \rho b_{j}^{\dagger}+b_{j}^{\dagger} \rho b_{j}-\frac{1}{2}\left\{b_{b} b_{j}^{\dagger}+n_{j}, \rho\right\}\right]
$$

Recap: - Both dynamics leads to entropy growth (entanglement and total)

- The total entropy grows, purity reduces

Analysis of experimental results:

A general phenomenon that can be easily shown in perturbation theory in γ

Mixed state entanglement: Partial transpose and negativity

Q: what is the entanglement in a mixed state?

$$
\rho_{A}=\sum_{i j k l}\left\langle e_{i}^{1}, e_{j}^{2}\right| \rho_{A}\left|e_{k}^{1}, e_{l}^{2}\right\rangle\left|e_{i}^{1}, e_{j}^{2}\right\rangle\left\langle e_{k}^{1}, e_{l}^{2}\right|
$$

$$
\rho_{A}^{T_{1}}=\sum_{i j k l}\left\langle e_{k}^{1}, e_{j}^{2}\right| \rho_{A}\left|e_{i}^{1}, e_{l}^{2}\right\rangle\left|e_{k}^{1}, e_{j}^{2}\right\rangle\left\langle e_{i}^{1}, e_{l}^{2}\right|
$$

$$
\left(\left|e_{i}^{1}, e_{j}^{2}\right\rangle\left\langle e_{k}^{1}, e_{l}^{2}\right|\right)^{T_{1}} \equiv\left|e_{k}^{1}, e_{j}^{2}\right\rangle\left\langle e_{i}^{1}, e_{l}^{2}\right|
$$

PPT criterion:
 If $\rho_{A}^{T_{1}}$ has negative eigenvalues ρ_{A} is entangled

The Negativity $=\mathcal{N}=\frac{\operatorname{Tr}\left|\rho_{A}^{T_{1}}\right|-1}{2}$ measure how much the eigenvalues of $\rho_{A}^{T_{1}}$ are negative and it is an entanglement monotone

$$
\text { Replica trick: } \operatorname{Tr}\left|\rho_{A}^{T_{1}}\right|=\lim _{n \rightarrow 1 / 2} \operatorname{Tr}\left(\rho_{A}^{T_{1}}\right)^{2 n}
$$

Intermezzo:"Negativity" in experiments

The negativity is difficult to measure experimentally, but the moments of the partial transpose p_{n} can E. Cornfeld, M. Goldstein, and E. Sela, PRA 98, 032302 (2018)
J. Gray, L. Banchi, A. Bayat, and S. Bose, Phys. Rev. Lett. 121, 150503 (2018)
A. Elben, R. Kueng, H.-Y. Huang, R. van Bijnen, C. Kokail, M. Dalmonte, P. Calabrese, B. Kraus, J. Preskill, P. Zoller, and B. Vermersch, PRL 125, 200501 (2020)

In Elben et al, PRL $2020 p_{n}$ are obtained by performing local random measurements and post-processing using the classical shadows framework
p_{3}-PPT condition: if $p_{3}<p_{2}^{2}$, then PPT is violated and there is entanglement

Generalizations

A.Neven, J. Carrasco, V. Vitale, C. Kokail, A. Elben, M. Dalmonte, P. Calabrese, P. Zoller, B. Vermersch, R. Kueng, and B. Kraus, ArXiv:2103.07443D_{n} conditions: generalized conditions, involving higher moments
() Symmetry resolution of $p_{3}-$ PPT:

- Allow to understand in which sector negative eigenvalues are
- More sensitive to small negative eigenvalues
a)
c)

Quench from Néel state in a long range XX

Fermionic partial transpose

Occupation number basis: $\left|\left\{n_{j}\right\}_{j \in A_{1}},\left\{n_{j}\right\}_{j \in A_{2}}\right\rangle=\left(f_{m_{1}}^{\dagger}\right)^{n_{m_{1}}} \ldots\left(f_{m_{\ell_{1}}}^{\dagger}\right)^{n_{m_{\ell_{1}}}}\left(f_{m_{1}^{\prime}}^{\dagger}\right)^{n_{m_{1}^{\prime}}} \ldots\left(f_{m_{\ell_{2}}^{\prime}}^{\dagger}\right)^{n_{m_{\ell_{2}}^{\prime}}}|0\rangle$

Fermionic partial transpose: $\quad\left(\left|\left\{n_{j}\right\}_{A_{1}},\left\{n_{j}\right\}_{A_{2}}\right\rangle\left\langle\left\{\bar{n}_{j}\right\}_{A_{1}},\left\{\bar{n}_{j}\right\}_{A_{2}}\right|\right)^{R_{1}}=$

$$
\left.\left.(-1)^{\phi\left(\left\{n_{j}\right\},\left\{\bar{n}_{j}\right\}\right)}\right)\left|\left\{\bar{n}_{j}\right\}_{A_{1}},\left\{n_{j}\right\}_{A_{2}}\right\rangle\left\langle\left\{n_{j}\right\}_{A_{1}},\left\{\bar{n}_{j}\right\}_{A_{2}}\right|\right)
$$

$\rho_{A}^{R_{1}}$ non hermitian
$\mathcal{N}=\frac{\operatorname{Tr}\left|\rho_{A}^{R_{1}}\right|-1}{2}=\frac{\operatorname{Tr} \sqrt{\rho_{A}^{R_{1}}\left(\rho_{A}^{R_{1}}\right)^{\dagger}}-1}{2}=\lim _{n \rightarrow 1 / 2} \frac{\operatorname{Tr}\left(\rho_{A}^{R_{1}}\left(\rho_{A}^{R_{1}}\right)^{\dagger}\right)^{n}-1}{2}$
Fermionic negativity (no negative eigenvalues, but entanglement monotone)

$$
\rho_{A}^{T_{1}}=\frac{e^{i \pi / 4} \rho_{A}^{R_{1}}+e^{-i \pi / 4}\left(\rho_{A}^{R_{1}}\right)^{\dagger}}{\sqrt{2}} \quad \begin{array}{cc}
\operatorname{Tr}\left(\rho_{A}^{T_{1}}\right)^{2 n} & \operatorname{Tr}\left(\rho_{A}^{R_{1}}\left(\rho_{A}^{R_{1}}\right)^{\dagger}\right)^{n} \\
\sum_{\rho_{A}^{T_{1}}} \text { all spin structures of } 2 \text { Gaussian } & \text { only } 1 \text { cycle } \\
\rho_{A}^{R_{1}} \text { Gaussian }
\end{array}
$$

Symmetry Resolution: example

a particle in one out of three boxes, $A=A_{1} \cup A_{2}, B$, $|\Psi\rangle=\alpha|100\rangle+\beta|010\rangle+\gamma|001\rangle$
$\rho_{A}=\left(\begin{array}{cccc}|00\rangle & |01\rangle & |10\rangle & |11\rangle \\ |\gamma|^{2} & 0 & 0 & 0 \\ 0 & |\beta|^{2} & \alpha^{*} \beta & 0 \\ 0 & \beta^{*} \alpha & |\alpha|^{2} & 0 \\ 0 & 0 & 0 & 0\end{array}\right)$
$\rho_{A}^{R_{1}}=\left(\begin{array}{cc}|\gamma|^{2} & 0 \\ 0 & |\beta|^{2} \\ 0 & 0 \\ i \beta \alpha^{*} & 0\end{array}\right.$

block-diagonal structure
block-diagonal structure

$$
\begin{gathered}
\rho_{A}^{R_{1}} \cong\left(|\alpha|^{2}\right)_{q=-1} \oplus\left(\begin{array}{cc}
|\gamma|^{2} & i \alpha \beta^{*} \\
i \beta \alpha^{*} & 0
\end{array}\right)_{q=0} \oplus\left(|\beta|^{2}\right)_{q=1} \\
Q=Q_{A_{2}}-Q_{A_{1}}^{R_{1}}
\end{gathered}
$$

charge imbalance resolved negativity

$$
\rho_{A} \cong\left(|\gamma|^{2}\right)_{\tilde{q}=0} \oplus\left(\begin{array}{ll}
|\beta|^{2} & \alpha \beta^{*} \\
\beta \alpha^{*} & |\alpha|^{2}
\end{array}\right)_{\tilde{q}=1} \oplus(0)_{\tilde{q}=2}
$$

$$
\mathcal{N}(q)=\frac{\operatorname{Tr}\left|\left(\rho_{A}^{R_{1}}(q)\right)\right|-1}{2}, \quad \rho_{A}^{R_{1}}(q)=\frac{\mathcal{P}_{q} \rho_{A}^{R_{1}} \mathcal{P}_{q}}{\operatorname{Tr}\left(\mathcal{P}_{q} \rho_{A}^{R_{1}}\right)}
$$

E. Cornfeld, M. Goldstein, and E. Sela, PRA 98, 032302 (2018)

$$
\mathcal{N}=\sum_{q} p(q) \mathcal{N}(q), \quad p(q)=\operatorname{Tr}\left(\mathcal{P}_{q} \rho_{A}^{R_{1}}\right)
$$

Some results: Negativity equipartition

Main message:

The symmetry resolution of entanglement measures provides a fine structure of the entanglement content of physical states of extended quantum systems that is not accessible from the measure of the total entanglement

Some features:

O Measurable experimentally (actually already measured!)
O Easy to compute via charged moments
O Relation to charge statistics, entanglement Hamiltonian,

THANK YOU

