Entanglement and symmetries are two pillars of modern physics. Surprisingly, only in very recent times the interplay between these two fundamental concepts became the theme of an intense research activity merging together notions and ideas from quantum information, quantum field theory, quantum optics, holography, many-body condensed matter, and many more. In this talk, I will review some of...
Typically, entropic uncertainty relations and inseparability criteria are formulated for marginal distributions in phase space. In this talk, I discuss an approach based on the Husimi Q-distribution, which can be measured following the heterodyne detection protocol. The associated entropy, known as the Wehrl entropy, fulfills an entropic uncertainty relation and can be used to construct...
Simultaneous measurements of two non-commuting spin observables allows for direct access to a quasi-probability distribution and its associated entropy. In the Gaussian regime, this corresponds to the Husimi Q-distribution and Wehrl entropy, respectively. We analytically and numerically model the system and measure a non-zero Wehrl mutual information—a perfect entanglement witness for pure...
The central tool of quantum metrology, the quantum Fisher information (QFI), quantifies the sensitivity of quantum states under small perturbations. Besides identifying strategies to overcome classical precision limits, the QFI provides a versatile tool to detect and quantify multipartite entanglement and steering. We show how the QFI can reveal the structure of inseparable partitions, leading...