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OUTLINE

1. The quest for hydrodynamics in systems that are small.
2. Elliptic flow as a function of particle number.

3. Hydrodynamic predictions.

Conclusion + Prospects.



1.
The guest for hydrodynamics in systems that are small.



Emergent phenomena are among the most interesting in Nature.

“More is different”, [P. Anderson, 1972]

https:/len.wikipedia.org/wiki/Emergence

Examples relevant for nuclear / cold atom physics:
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https://en.wikipedia.org/wiki/Emergence

Focus of this talk: Hydrodynamics, a prime example of emergent (macroscopic) behavior.
F=-VP

Emergence in a particle system via collisions (kinetic theory).

The pressure tensor is defined as the fluctuation of the
velocities of the ensemble from the mean velocity, i.e.
as the 2-nd order moment:

P=m _/'(v — V) (v — vp) F(v)d3v

Emergence of superfluid motion in BEC (no collisions, but due to interactions in a Fermi gas).

—n+V(vsn)=0 EOS Hydrodynamic equations
ot of superfluids (T=0) [from S. Stringari,
Closed equations for Lectures at College de France (2004/2005)]
a—v +V(—mv§ +um)+V, )=0 |n and Vg
t

Both situations require a mascroscopic scenario, i.e., very large particle numbers.

Frontier: mesoscopic systems? What if the particle number is small?



Tool to probe emergent hydrodynamic behavior:
Shape inversion of the gas due to asymmetry in pressure-gradient force (elliptic flow).

[Ollitrault, PRD 46 (1992) 229-245

Does not really matter whether system is superfluid or collisional.

Realistic application: ideal Fermi gas in 2D at zero temperature.
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In heavy-ion collisions:
2" Fourier harmonic of the
azimuthal particle distribution.
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Quark Gluon Plasma
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[Romatschke & Romatschke, PRL 99, 172301 (2007)]
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Clear evidence that the QGP behaves like a strongly-coupled quasi-perfect fluid.
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Why mesoscopic systems?

Signal of elliptic flow persists at low particle numbers.
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30-40 strongly-interacting particles...

can that make a fluid?

N, (n] <0.8)
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Understanding “small systems” is a very active research area.
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Can we attack these questions with cold atom experiments?




2.
Elliptic flow as a function of particle number.

[Floerchinger, Giacalone, Heyen, Tharwat, PRC 105, 044908 (2022)]
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Interaction and system geometry can be tuned.

Elliptic flow used to reveal superfluid behavior of an ultracold Fermi gas.

ideal hydrodynamics
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[Menotti, Pedri, Stringari, PRL 89, 250402 (2002)]
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Controlled transition from few-body to many-body physics.

[Serwane et al., Science 332 (2011) 6027]

A

SLi atoms in only microtrap apply magnetic spill atoms
reservoir and microtrap field gradient

[methods: next talk by Sandra Brandstetter]

Our proposal:
Study elliptic flow to assess emergent hydrodynamic behavior
as a function of particle number (in two dimensions).
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Measuring elliptic flow in mescoscopic samples.

1 — Statistical description, i.e., repeat the experiment many times like in heavy-ion collisions.
2 — Unlike in heavy-ion collisions, orientation of the ellipse and ellipticity, €2, can be chosen.

3 — Let the system expand and measure anisotropy <cos 2®p> with respect to the fixed axis.

single-particle measurement!

4 — Repeat the experiments for different number of atoms in the cloud.

interacting Fermi gas (A = wy / wx)
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Assessing the “background”.

Imposing an elliptical potential has a strong
impact on the initial momentum distribution.

DAz > i

A

Calculate v2 from the quantum harmonic
oscillator (initial momentum anisotropy).

v2 = (cos(20p))y

AN
A trapped
non-interacting
fermions

It disappears quickly, like 1/N.
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Qualitative expectations.

é‘;‘?

hydrodynamics
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Combining the curves...

Could there be a minimum?

Transition from quantum effects
to interaction effects?

hydrodynamics

[experiment: next talk by Sandra Brandstetter]
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3.
Hydrodynamic predictions.
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How to test an emergent fluid description?
Momentum space anisotropy can not be directly predicted by hydrodynamics.

Idea: look at the evolution of the “average cloud” — » ‘1‘)‘2(}(,}7>
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Our approach:
— Take the same geometry as experiment at t=0.
— Assume it represents a fluid with a total mass of 10 °Li atoms.
— Evolve in time according to ideal (superfluid?) hydrodynamics.
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We only need the pressure.
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EoS for ideal Fermi gas: 0
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HYDRODYNAMIC PREDICTIONS

Compressible hydro solver developed at Stony Brook:
https://pyro2.readthedocs.io/en/latest/index.html#
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[experiment: next talk by Sandra Brandstetter]


https://pyro2.readthedocs.io/en/latest/index.html#

HYDRODYNAMIC PREDICTIONS

Over what time scale are gradients effective? ' = —\V P
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[experiment: next talk by Sandra Brandstetter]
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CONCLUSION

Emergent fluid behavior observed across scales (superfluids: T=0, QGP: T~1012 K)

Cold atoms to assess fluid behavior with tunable particle number and interactions.

Method from high-energy nuclear collisions to measure elliptic flow with few particles.

“Background” effects leading to elliptic flow vanish quickly with the particle number.

Ideal hydrodynamic predictions for || in the experimental setup.
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PROSPECTS

Study more observables (e.g. triangular flow, mean momentum)

Going beyond [¢|*? Event-by-event analysis?

Further signals of superfluidity (rotational properties?)

Microscopic approach?
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THANK YOU!
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