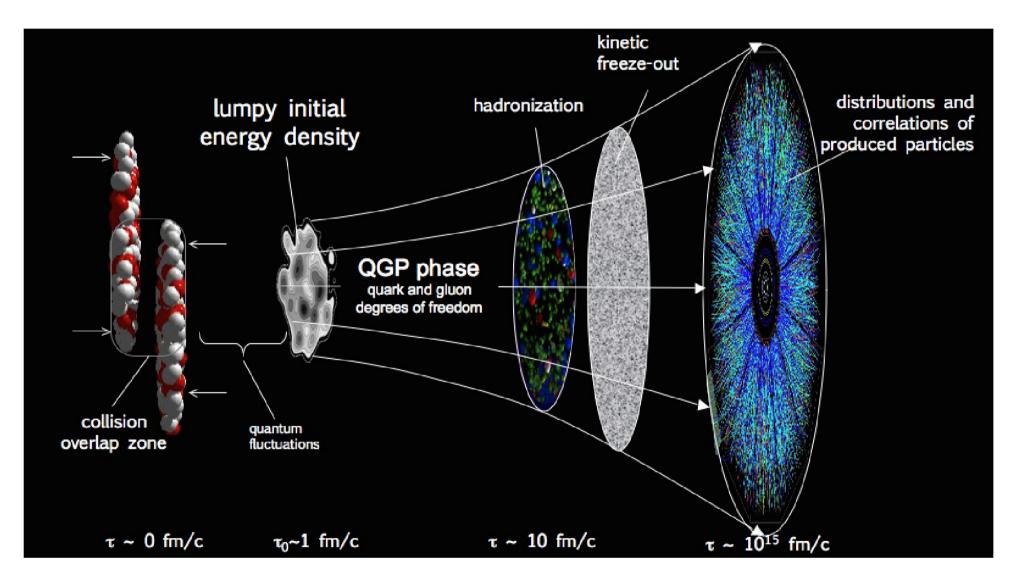
Extending the fluid dynamic description of heavy-ion collisions to times before the collision

by Andreas Kirchner

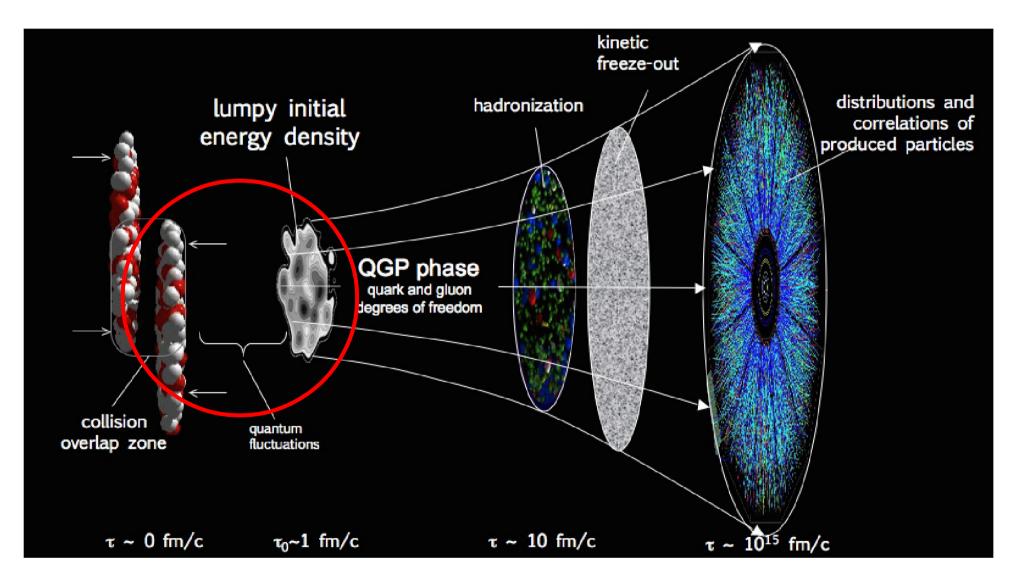
QSEC2022 15.11.2022

F. Capellino, A. Erschfeld, S. Floerchinger, E. Grossi, A. Kirchner

Standard model of heavy-ion collisions



Standard model of heavy-ion collisions



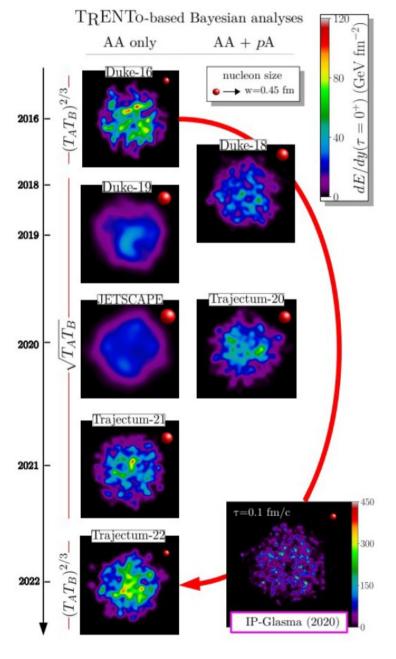
Current model of initial conditions

- Different "models on market" for initializing hydro:
 - TrenTo
 - IP-Glasma
 - Color Glass Condensate
- TrenTo checks geometrically for collisions of nucleons \rightarrow Reduced thickness functions $T_{A/B}$

$$\frac{dE}{dy} \propto \left(\frac{T_A^p + T_b^p}{2}\right)^{q/p}$$

What are the optimal values for p and q ?

Little history of initial conditions



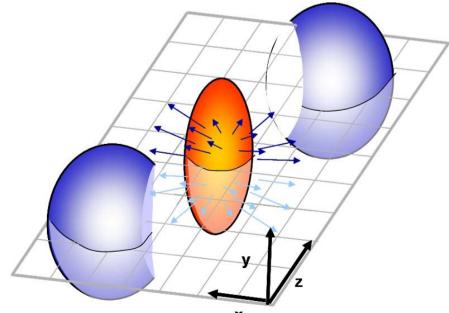
- Values of p and q determined by bayesian analysis, fit to data
 - \rightarrow Values changed back and forth
 - \rightarrow Interpretation of geometric picture changes between entropy and energy density
 - \rightarrow Can this step in modelling be evaded?
 - Can hydro describe full collision?

2208.06839

Working principle

- Cartesian coordinates (t, x, y, z)
- For now: only consider longitudinal expansion
- Fluid fields reduce to

$$\phi = (T, u, \pi^{zz}, \pi_{\text{Bulk}}, \nu, \mu)$$



Hydrodynamic setting

 EoM derived from energy-momentum and baryon number current conservation

$$\nabla_{\mu}T^{\mu\nu} = 0 \qquad \qquad \nabla_{\mu}n^{\mu} = 0$$

$$u^{\mu}\partial_{\mu}\epsilon + (\epsilon + p + \pi_{\text{Bulk}})\nabla_{\mu}u^{\mu} + \pi^{\mu\nu}\nabla_{\mu}u_{\nu} = 0$$

$$(\epsilon + p + \pi_{\text{Bulk}})u^{\mu}\nabla_{\mu}u^{\nu} + \Delta^{\mu\nu}\partial_{\mu}(p + \pi_{\text{Bulk}}) + \Delta^{\nu}_{\alpha}\nabla_{\mu}\pi^{\mu\alpha} = 0$$

$$u^{\mu}\partial_{\mu}n + n\nabla_{\mu}u^{\mu} + \nabla_{\mu}\nu^{\mu} = 0$$

 Energy-mometum tensor is based on tensor decomposition with respect to time-like eigenvector (i.e. Fluid velocity)

$$T^{\mu\nu} = \epsilon u^{\mu} u^{\nu} + (p + \pi_{\text{Bulk}}) \Delta^{\mu\nu} + \pi^{\mu\nu}$$
$$n^{\mu} = n u^{\mu} + \nu^{\mu}$$

Hydrodynamic setting

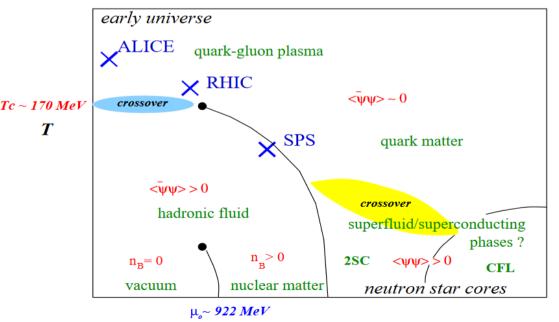
• Supplemental equations for $\pi^{\mu\nu}$, π_{Bulk} and ν^{μ} : Second order Israel-Stewart and diffusion current equations

$$\begin{aligned} \tau_{H} \Delta^{\alpha}_{\beta} u^{\mu} \nabla_{\mu} \nu^{\beta} + \nu^{\alpha} + \kappa \left(\frac{nT}{\epsilon+p}\right)^{2} \Delta^{\alpha\beta} \partial_{\beta} \left(\frac{\mu_{B}}{T}\right) &= 0 \\ P^{\mu\nu\rho}_{\sigma} \left[\tau_{S} (u^{\lambda} \nabla_{\lambda} \pi^{\sigma}_{\rho} - 2\pi^{\sigma\lambda} \omega_{\rho\lambda}) + 2\eta \nabla_{\rho} u^{\sigma}\right] + \pi^{\mu\nu} &= 0 \\ \tau_{\text{Bulk}} u^{\mu} \partial_{\mu} \pi_{\text{Bulk}} + \pi_{\text{Bulk}} + \zeta \nabla_{\mu} u^{\mu} &= 0 \\ \text{Israel-Stewart} \qquad \text{Ideal Navier-Stokes} \end{aligned}$$

• Isreal-Stewart: Introduce relaxation time \mathcal{T} \rightarrow Equations remain valid outside equilibrium

Nuclear droplet model

- Idea of describing nucleus as liquid not new!
 → Bethe-Weizsäcker-formula (1935)
- Use fluid variables to describe nucleus
 - \rightarrow Fluid system described by energy-momentum tensor
- Single nucleus sits at vacuum-nuclear matter phase transition $\rightarrow T^{\mu\nu}$ describes nucleus and vacuum!



Adding energy & momentum

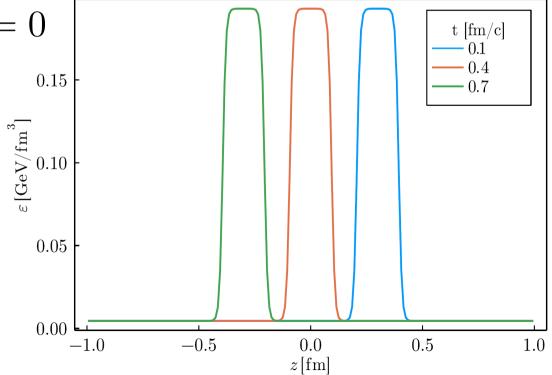
Incomming nuclei described by

$$T^{\mu\nu}_{\to/\leftarrow} = \epsilon_{\to/\leftarrow} u^{\mu}_{\to/\leftarrow} u^{\nu}_{\to/\leftarrow}$$

- Nuclei sit at nuclear phase transition
 - Initial energy density $\epsilon = \mu_{crit} n$

 $- EoM simplify to <math>u^{\mu} \partial_{\mu} n = 0$

Free streaming nuclei



Adding energy & momentum

 Energy-momentum tensor and number density current of collision system

$$T^{\mu\nu}_{\rm coll} = T^{\mu\nu}_{\rightarrow} + T^{\mu\nu}_{\leftarrow} \qquad \qquad n^{\mu}_{\rm coll} = n^{\mu}_{\rightarrow} + n^{\mu}_{\leftarrow}$$

Obtain fluid variables via Landau matching

$$T^{\mu}_{\nu}u^{\nu} = -\epsilon u^{\mu}, \quad u_{\mu}u^{\mu} = -1$$

• Number density and diffusion current given by

$$\begin{pmatrix} \gamma_{\rightarrow}n_{\rightarrow} + \gamma_{\leftarrow}n_{\leftarrow} \\ 0 \\ 0 \\ \gamma_{\rightarrow}\beta_{\rightarrow}n_{\rightarrow} + \gamma_{\leftarrow}\beta_{\leftarrow}n_{\leftarrow} \end{pmatrix} \stackrel{!}{=} \begin{pmatrix} \gamma n + \beta \nu \\ 0 \\ 0 \\ \gamma\beta n + \nu \end{pmatrix}$$

Adding energy & momentum

• Viscous corrections given by

$$\pi_{\text{Bulk}} = \frac{1}{3} \Delta^{\mu\nu} T_{\mu\nu} - p(T,\mu) \quad \pi^{\mu\nu} = T^{\mu\nu} - \epsilon u^{\mu} u^{\nu} - (p + \pi_{\text{Bulk}}) \Delta^{\mu\nu}$$

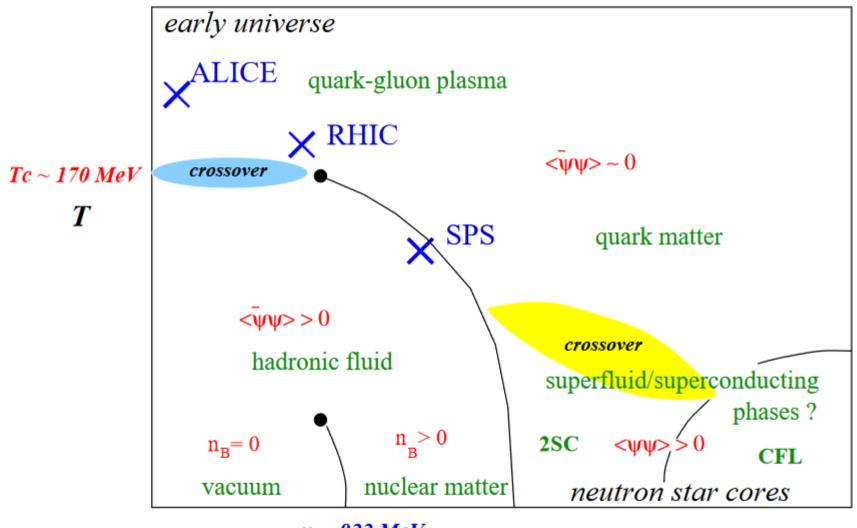
Invert EoS to obtain full set of fluid variables

$$n(T,\mu) = n_{\text{coll}}$$

 $\epsilon(T,\mu) = \epsilon_{\text{coll}}$

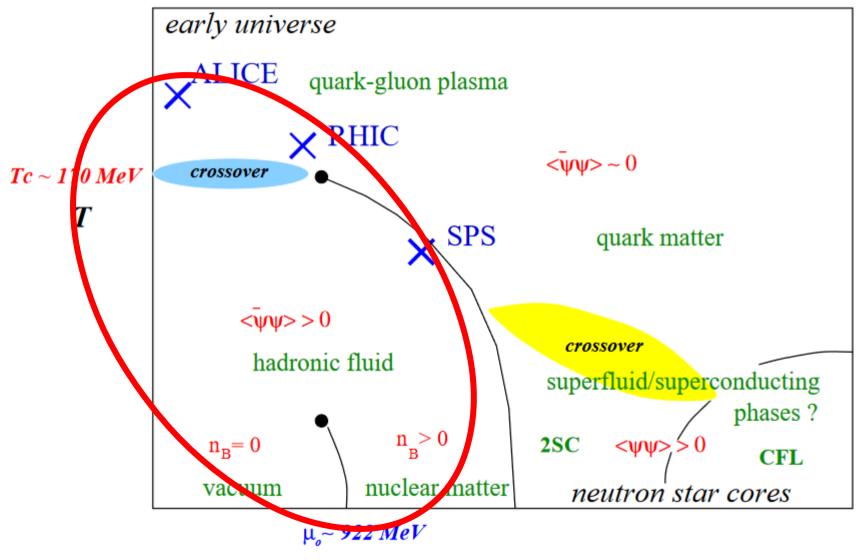
-Which EoS to use to cover large range in T and μ ?

Equation of state



μ_o~ 922 MeV

Equation of state



μ

EoS – High T

• At high T and low density \rightarrow Lattice QCD

$$p_{\text{LQCD}} = p(T) + T^4 \left(\frac{1}{2!}\chi_{2B}(T)\left(\frac{\mu}{T}\right)^2 + \frac{1}{4!}\chi_{4B}(T)\left(\frac{\mu}{T}\right)^4 \frac{1}{6!}\chi_{6B}(T)\left(\frac{\mu}{T}\right)^6\right)$$

early anivers

crossover

 $\langle \bar{\psi}\psi \rangle > 0$

hadronic fluid

 $Tc \sim 1$

quark-gluon plasma

 $n_{\rm B}^{>0}$

nuclea

SPS

hatter

μ

 $\langle \bar{\psi}\psi \rangle \sim 0$

crossover

2SC <\\\>

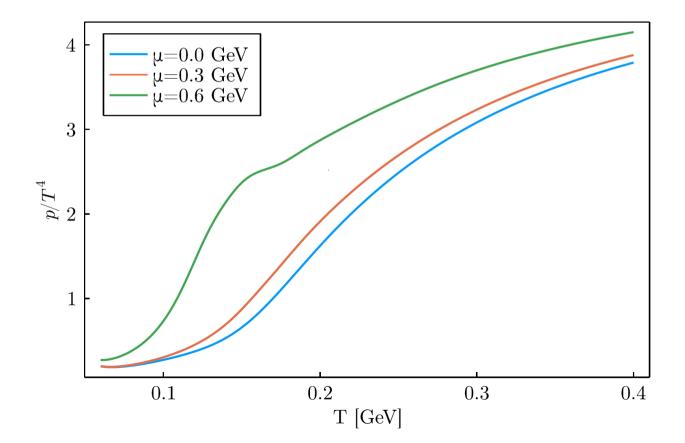
quark matter

superfluid/superconducting

neutron star cores

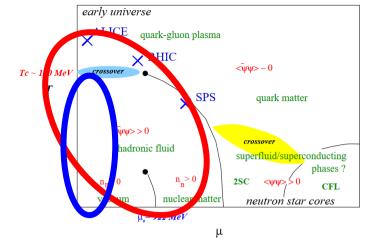
phases ?

CFL



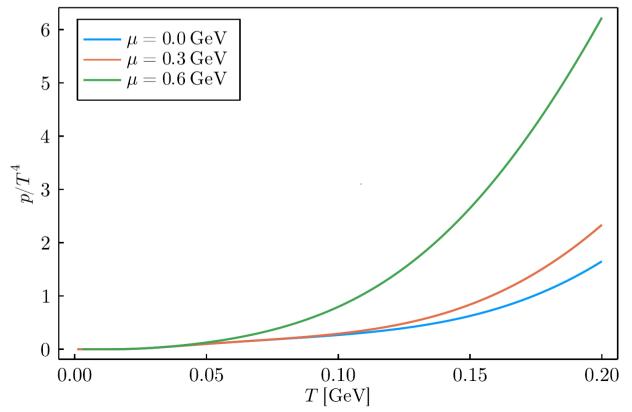
EoS – Low T, low density

- Low T and low density \rightarrow Hadron Resonance Gas



$$p_{\mathrm{HRG}}(T,\mu) = \sum_{i} d_i p_{\mathrm{FG}}(T, B_i\mu; m_i) + \sum_{i} d_i p_{\mathrm{BG}}(T; m_i)$$

• Pressure given by sum of partial pressure of constituents



EoS – Low T, high density

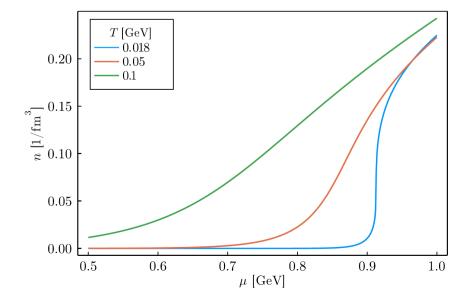
• Low T and high density \rightarrow Walecka model

- Effective model of protons and neutrons with omega and scalar meson exchange
- Pressure in mean-field approximation: [1202.1671]

 $p_{\rm WM}(T,\mu) = 4p_{\rm FG}(T,\mu^*;m_N^*) + 4p_{\rm FG}(T,-\mu^*;m_N^*) - \frac{1}{2}m_\sigma^2\bar{\sigma}^2 + \frac{1}{2}m_\omega^2\bar{\omega}_0^2$

· Mean-fields determined by gap equations

$$\bar{\omega}_{0} = \frac{g_{\omega}}{m_{\omega}^{2}} \frac{\partial P_{FD}}{\partial \mu^{*}}$$
$$\bar{\sigma} = -\frac{g_{\sigma}}{m_{\sigma}^{2}} \frac{\partial P_{FD}}{\partial m_{N}^{*}}$$



early universe

<ψψ>>0 hadronic fluid

quark-gluon plasma

 $\langle \bar{\Psi}\Psi \rangle \sim 0$

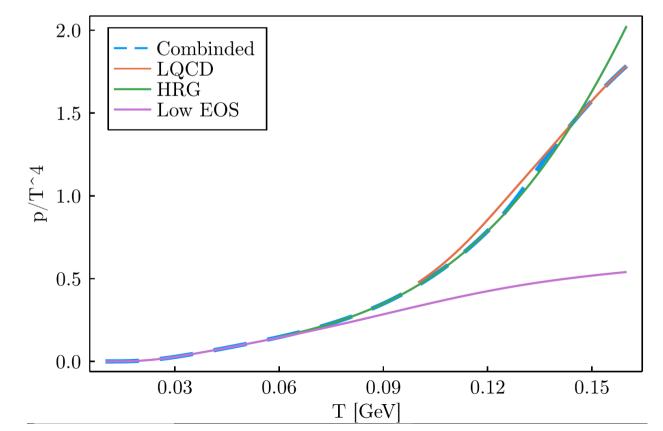
quark matter

nducting phases f

Combining the EoS

- Low T: HRG w/o proton and neutron + Walecka
- High T: Transition from HRG to LQCD

$$p(T,\mu) = \Theta(T,\mu)p_{\text{LQCD}}(T,\mu) + (1 - \Theta(T,\mu))p_{\text{HRG}}(T,\mu)$$

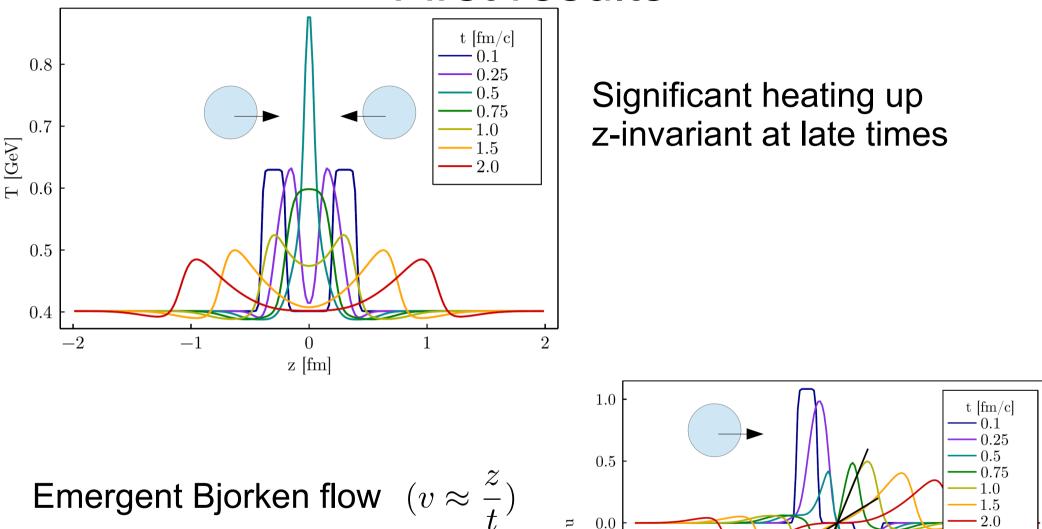


Finite Temperature Landau matching

- EoS at low T tricky to handle (degenerate Fermi gas) $p_{\rm HRG} \propto K_2(rac{m}{T}) \qquad p_{\rm Walecka} \propto {\rm Li}_{5/2}(-e^{rac{\mu-m}{T}})$
- Solution: Sommerfeld & asymptotic expansion
- For now: Do Landau matching at finite temperature

→Invert
$$n(T_{BG}, \mu) = n_{drop}$$

 \blacktriangleright Do Landau matching with $T^{\mu\nu} = \epsilon(T_{BG}, \mu) u^{\mu} u^{\nu}$



-0.5

-1.0

-2

-1

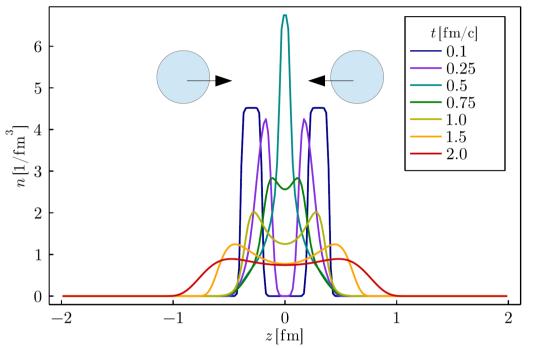
0

z [fm]

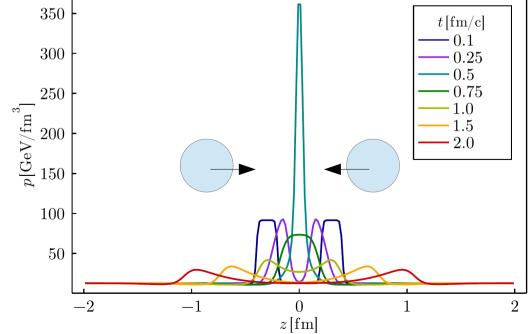
1

2

First results

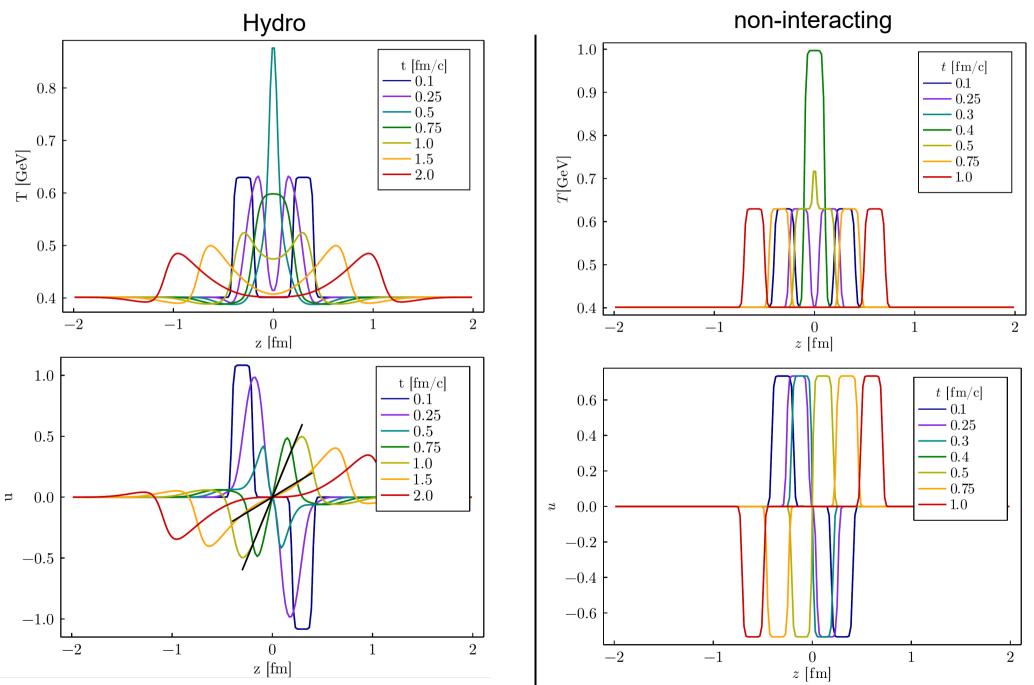


Matter clumps up in collision zone



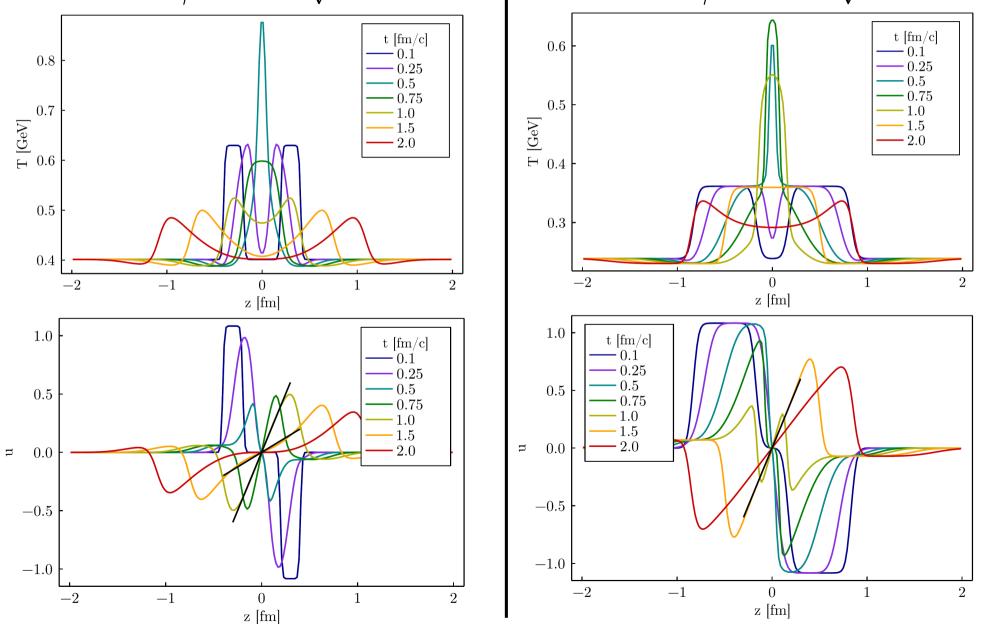
Huge initial pressure gradient \rightarrow longitudinal expansion

First results



First results

 $v = 0.9999 \Rightarrow \gamma \approx 71 \Rightarrow \sqrt{s} \approx 133 \text{ GeV}$ $v = 0.999 \Rightarrow \gamma \approx 22 \Rightarrow \sqrt{s} \approx 42 \text{ GeV}$

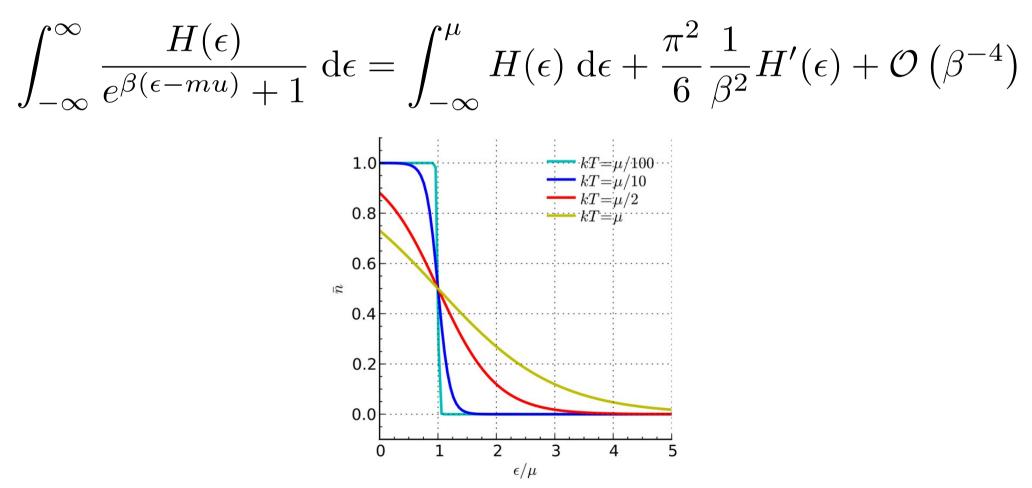


Summary & Outlook

- Applied hydro to time before collision
 - \rightarrow Heating up
 - \rightarrow Emergent Bjorken flow
- Outlook:
 - Improve initial conditions $T^{\mu\nu} = T^{\mu\nu}_{in} T^{\mu\nu}_{out}$
 - Initialize viscous fields
 - \rightarrow Examine causality
 - Apply results to traditional hydro

Sommerfeld Expansion

- At T = 0: Fermions occupy Fermi-sphere
 - \rightarrow Fermi distribution becomes step function
- Including first correction in temperature yields



Validity of hydrodynamics

- Hydrodynamics assumes local thermal equilibrium
- Deviations from equilibrium

 \rightarrow Dissipative corrections

- Navier-Stokes-type equation $\pi_{\mathrm{Bulk}} = -\zeta \nabla_{\mu} u^{\mu}$
 - \rightarrow Bulk pressure reacts instantly
 - \rightarrow Out-of-equilibrium effects get resolved quickly
 - \rightarrow Causality can be violated
- Add relaxation time $\tau_{\text{Bulk}} u_{\mu} \partial^{\mu} \pi_{\text{Bulk}} + \pi_{\text{Bulk}} = -\zeta \nabla_{\mu} u^{\mu}$

 \rightarrow System can stay out of equilibrium for longer

Landau matching

- Decompose $T^{\mu\nu}$ tensor with respect to vector \rightarrow Logical choice: fluid velocity u^{μ}
- Decompose in orthogonal & parallel to u^{μ}
- Have trace and traceless part

$$T^{\mu\nu} = \epsilon u^{\mu} u^{\nu} + (p + \pi_{\text{Bulk}}) \Delta^{\mu\nu} + \pi^{\mu\nu}$$

Numeric scheme

- Finite difference method based on Jour. Of Comp. Phys. 230 (2011) 232-244
- Time Derivative given by

$$\phi_{j}^{n+1} = \phi_{j}^{n} - \Delta t \left\{ H \left(\frac{\phi_{j+1}^{n} - \phi_{j-1}^{n}}{2\Delta x} \right) - \frac{\alpha}{2} \left(\frac{\phi_{j+1}^{n} - 2\phi_{j}^{n} + \phi_{j-1}^{n}}{\Delta x} \right) \right\}$$
First order time derivative Numeric viscosity

• Julia implementation with Tsit5() solver