Irradiation of powered AtlasPix3.1 at Bonn Cyclotron

Maja Lecher

08.04.2022

Goal

- Dates: 18.-21.07.2022
- Irradiate HV-biased AtlasPix3.1 at Bonn HISKP Cyclotron facility
 - Available proton energies: 7 14 MeV
 - Applied irrad. currents: 20 60 nA
- Characterize chip before & after, take IV curves in between irrad. steps
- Study TID + bulk damage

Beam area

- Cooling box w Kapton foil entry housing DUT
 - Cooling via N $_2$ (T \sim -15 $^\circ$ C)
 - 2 temperature sensors
- DUT: AtlasPix3.1
 powered via PCle
 adapter and connected
 to PS's via long BNC
 cables (Supplied LV's:
 Vssa, Vdd, Vmin, gate)

Beam area

- Cooling box w Kapton foil entry housing DUT
 - Cooling via N $_2$ (T \sim -15 $^\circ$ C)
 - 2 temperature sensors
- DUT: AtlasPix3.1
 powered via PCle
 adapter and connected
 to PS's via long BNC
 cables (Supplied LV's:
 Vssa, Vdd, Vmin, gate)

Beam area

- Cooling box w Kapton foil entry housing DUT
 - Cooling via N $_2$ (T \sim -15 $^\circ$ C)
 - 2 temperature sensors
- DUT: AtlasPix3.1
 powered via PCle
 adapter and connected
 to PS's via long BNC
 cables (Supplied LV's:
 Vssa, Vdd, Vmin, gate)

Gallery

- Power supplies connected to DUT via BNC cables
 - 2 HAMEC LV supplies for Vdd, Vssa, Vmin, gate
 - 1 Keithley 2611b for HV
- Lab PC with slow control software
- Full GECCO + FPGA setup for data taking before/after irrad

Control room

 2nd PC connected to lab PC via local network → manage slow control system from here

Procedure

- Pre-irrad characterization
 - ullet IV curve o Breakdown voltage, leakage current
 - Fe55 spectrum \rightarrow ToT
 - ullet SCurves o Monitor threshold changes
- Irradiation
 - 5-10 fast scans at increasing bias voltages
 - Scanning speed: 60 mm/s
 - Irrad current: 40 nA
 - Bias voltages: 0 60 V, 10 V steps
 - Total dose: 1.9e13 protons/cm² \approx 7.8e13 n_{eq}/cm²
 - IV curve after each voltage step
 - Slow scans at 60 V bias voltage & decreasing irrad. currents
 - Scanning speed: 12 mm/s
 - Irrad. currents: 40 nA, 30 nA, 20 nA
 - IV curve after last irradiation
 - \rightarrow Total fluence after irrad.: 1.05e14 n_{eq}/cm^2 ; compare LHCb expectation: 5.9e14 n_{eq}/cm^2

Procedure

- Post-irrad. characterization (To Do)
 - Original intention: Fe scan before leaving, but: could not get chip back up and running properly after irrad.
 - Chip configurable (but needs re-tuning)
 - Leakage currents high ($\sim 500 \mu A$)
 - Injections not working at all
 - Chip very noisy without cooling, some decoding errors pre-tuning
 - FPGA unhappy when cooled (commercial FPGA, specified for 0-85 °C op. temp.)
 - Plan: attempt to revive chip; if successful: Fe55 spectrum, SCurves

Irradiation protocol

Fast scan (60 mm/s):

V _{bias} during irrad. [V]	Total fluence [neq/cm ²]	I _{proton} [nA]
0	5.11e12	40 nA
0	1.14e13	40 nA
-10	2.32e13	40 nA
(failure; 0 V & LV off)	3.16e13	40 nA
-30	4.00e13	40 nA
-40	4.76e13	40 nA
-50	6.11e13	40 nA
-60	7.8e13	40 nA

Slow scan (12 mm/s):

V _{bias} during irrad. [V]	Total fluence [neq/cm ²]	I _{proton} [nA]
-60	Unknown	40 nA
-60	Unknown	30 nA
-60	1.05e14	20 nA

Irradiation of powered AtlasPix3.1 at Bonn C

7/12

Breakdown voltage (Note: current limit set too low)

• V_{break} drops by ~ 6.5 V after first irrad. scan (Note: T difference not yet accounted for)

- V_{break} drops by ~ 6.5 V after first irrad. scan (Note: T difference not yet accounted for)
- Increasing fluence by 6.3e12 neq/cm² at 0 V: slight further decrease in V_{break}

- V_{break} drops by ~ 6.5 V after first irrad. scan (Note: T difference not yet accounted for)
- Increasing fluence by $6.3e12 \text{ neq/cm}^2$ at 0 V: slight further decrease in V_{break}
- Between irradiation steps up to 4.76e13 neq/cm²: Slight increase in V_{break}; after: drop (note: better fit model necessary?)

- V_{break} drops by $\sim 6.5~V$ after first irrad. scan (Note: T difference not yet accounted for)
- Increasing fluence by 6.3e12 neq/cm² at 0 V: slight further decrease in V_{break}
- Between irradiation steps up to 4.76e13 neq/cm²: Slight increase in V_{break}; after: drop (note: better fit model necessary?)
- Steep increase in leakage current during IV's after 4.76e13 neq/cm²

- V_{break} drops by ~ 6.5 V after first irrad. scan (Note: T difference not yet accounted for)
- Increasing fluence by 6.3e12 neq/cm² at 0 V: slight further decrease in V_{break}
- Between irradiation steps up to 4.76e13 neq/cm²: Slight increase in V_{break}; after: drop (note: better fit model necessary?)
- Steep increase in leakage current during IV's after 4.76e13 neq/cm²
- Day after irrad. at room T: V_{break} ~
 -63.5 V → Shift in breakdown voltage partially reversed

- Proton spill structure clearly visible in leakage current
- Expected beam-induced current for 40 nA proton current, 100 μ m depletion zone: 7 mA $\Rightarrow \sim$ 4 mA leakage current during spills (seen for all bias steps) plausible
- Leakage current between spills: from lower envelope ⇒ steady increase

- Proton spill structure clearly visible in leakage current
- Expected beam-induced current for 40 nA proton current, 100 μ m depletion zone: 7 mA $\Rightarrow \sim$ 4 mA leakage current during spills (seen for all bias steps) plausible
- Leakage current between spills: from lower envelope ⇒ steady increase

Answer: The rate R of protons is equal to

$$R = \frac{I}{q_e}$$

The energy deposited per proton is

$$E = \frac{\Delta E}{\Delta X} \cdot \rho_{Si} \cdot d = 29 MeV cm^{-2} g^{-1} \cdot 2.31 \frac{g}{cm^3} \cdot 100 \mu m = 6.7 \cdot 10^5 eV$$

The number of electrons produced by one proton is

$$N_e = \frac{E}{3.65} = \frac{6.7 \cdot 10^5 eV}{3.65 eV} = 1.8 \cdot 10^5$$

Combining all that gives

$$I_{leak} = q_e N_e \cdot R = N_e \cdot I = 1.8 \cdot 10^5 \cdot 40 nA = 7.2 mA$$

- Proton spill structure clearly visible in leakage current
- Expected beam-induced current for 40 nA proton current, 100 μ m depletion zone: 7 mA $\Rightarrow \sim$ 4 mA leakage current during spills (seen for all bias steps) plausible
- Leakage current between spills: from lower envelope ⇒ steady increase

- Proton spill structure clearly visible in leakage current
- Expected beam-induced current for 40 nA proton current, 100 μ m depletion zone: 7 mA \Rightarrow \sim 4 mA leakage current during spills (seen for all bias steps) plausible
- Leakage current between spills: from lower envelope ⇒ steady increase

- Proton spill structure clearly visible in leakage current
- Expected beam-induced current for 40 nA proton current, 100 μ m depletion zone: 7 mA \Rightarrow \sim 4 mA leakage current during spills (seen for all bias steps) plausible
- Leakage current between spills: from lower envelope ⇒ steady increase

LV behaviour (Voltages)

LV voltages at -10, -40, -50, and -60 V bias voltage during irradiation

 \rightarrow Vssa, Vdd, Vgate relatively stable; Vmin increased by up to \sim 200 mV above set level after 2.32e13 neq/cm² fluence

LV behaviour (Voltages)

 \rightarrow Vssa, Vdd, Vgate relatively stable; Vmin increased by up to \sim 200 mV above set level after 2.32e13 neq/cm² fluence

08.04.2022

LV behaviour (Currents)

LV currents at -10, -40, -50, and -60 V bias voltage during irradiation; Note: -20, -30 V missing

→ Proton spill structure visible in Idd, Issa, and gate; not in Imin

To Do

- New IV's with returned chip (incl. scans in climate chamber)
- Incorporate temperature & fluence data from irrad_control
- Analyze slow scans
- New irrad. campaign in Bonn?