Evaluating stretched TDC: Status Update

Alexander Schmidt

21. August 2022

1/31

Contents

Introduction

Results

Outlook

1. Reminder: Stretched TDC Circuit

3/31

The goal

We want to measure particles

- improve precision of time measurements for hits
- that's it

Performance Metrics

- precise timing (ideally below 1ns)
- homogenous time resolution
- low variance between pixels
- try to keep power draw low if possible

Idea: Stretched TDC

6/31

Expected outcome for the distribution of δ

- TS3 should have a delay from TS1 which distributed approximately evenly over a sharply defined range
- define $\delta := TS3 TS1$
- define δ_{min} and δ_{max} as the edges of the distribution
- reconstruct $t_{hit} = clock_period \cdot (\mathit{TS}1 + \frac{\delta \delta_{min}}{\delta_{max} \delta_{min}})$

Excpected distribution of δ over all hits

Fit the delta Distribution

- A box function might sound natural but fits will likely fail due to the unsteady nature
- Instead as sigmoid function to approximate the edges of the block
- $sig(x; c, s) := \frac{1}{1 + \exp(-4s(x-c))}$
- free parameters: edge position c and slope s
- full fit function: multiply two sigmoids $f(x; A, B, I, r, s_I, s_r) := B + A \cdot sig(x; I, \frac{s_I}{A}) \cdot sig(x; r, \frac{s_r}{A})$

Sigmoid curve and full fit function missing :)

Implementation: Stretched TDC circuit

- By default pull voltage at the capacitor to GND
- Once a hit is registered, disconnect the connection to ground such that the current supplies I₁ and I₂ charge the capacitor
- Once the clock edge hits, disconnect I₁, such that now only I₂ charges the capacitor
- Once the threshold is passed, store the current value of *TS3*

Simplified model of the *stretched TDC* circuit

Implementation: Stretched TDC circuit

- For current sourche use pmos transistors in saturation, control the current with DAC values (VP_Big and VP_Small)
- The connection to ground is regulated using an NMOS transistor
- The connection of I₁ to the capacitor is regulated using a transmission gate
- Use a Flipflop for the transmission gate input, such that is changed once the clock edge hits but only if a hit is there OAC values to select are
- Two more DAC values for threshold and VN Comp

Transistor level model of the *stretched TDC* circuit

Problem: Stray values for δ

How do we interpret timestamps with delta outside the range $[\delta_{max}, \delta_{min}]$?

Depends on what the cause is...

Problem: Manufacturing variance

- There is some pixel-by-pxel variance in transistor parameters and (more importantly) C
- We need to individually find δ_{max} and δ_{min} for each pixel to calibrate the time reconstruction

2. Results: Stretched TDC Analysis

13/31

Measurement setup

- I did runs for a lot of parametric selections, but for now look at just 2 of them
- Slow and precise: $VP_Big = 8$, $VP_Small = 8$, $VN_Comp = a$, th = 1300 mV
- ullet Fast and tight $VP_Big = a$, $VP_Small = c$, $VN_Comp = a$, th = 1300 mV

Global delta distribution

$$VP_Big = 8$$
, $VP_Small = 8$, $VN_Comp = a$, $th = 1300$ mV

Global delta distribution

$$VP_Big = a$$
, $VP_Small = c$, $VN_Comp = a$, $th = 1300 \text{mV}$

Single Pixel delta distribution

$$VP_Big = 8$$
, $VP_Small = 8$, $VN_Comp = a$, $th = 1300$ mV

Alexander Schmidt

Single Pixel delta distribution

$$VP_Big = a$$
, $VP_Small = c$, $VN_Comp = a$, $th = 1300 \text{mV}$

How many stray timestamps are there?

$$VP_Big = 8$$
, $VP_Small = 8$, $VN_Comp = a$, $th = 1300$ mV

How many stray timestamps are there?

$$VP_Big = a$$
, $VP_Small = c$, $VN_Comp = a$, $th = 1300 mV$

Do stray timestamps correlate with δ_{max} ?

$$VP_Big = 8$$
, $VP_Small = 8$, $VN_Comp = a$, $th = 1300$ mV

Do stray timestamps correlate with δ_{max} ?

$$VP_Big = a$$
, $VP_Small = c$, $VN_Comp = a$, $th = 1300 \text{mV}$

Do stray timestamps correlate with amount of hits (hot or dead pixels)?

$$VP_Big = 8$$
, $VP_Small = 8$, $VN_Comp = a$, $th = 1300$ mV

Do stray timestamps correlate with amount of hits (hot or dead pixels)?

$$VP_Big = a$$
, $VP_Small = c$, $VN_Comp = a$, $th = 1300 \text{mV}$

Distribution of δ_{max} and δ_{min} over all pixels

$$VP_Big = 8$$
, $VP_Small = 8$, $VN_Comp = a$, $th = 1300$ mV

25 / 31

Distribution of δ_{max} and δ_{min} over all pixels

$$VP_Big = a$$
, $VP_Small = c$, $VN_Comp = a$, $th = 1300 \text{mV}$

Distribution of block width $w := \delta_{max} - \delta_{min}$ over all pixels

$$VP_Big = 8$$
, $VP_Small = 8$, $VN_Comp = a$, $th = 1300$ mV

Distribution of block width $w := \delta_{max} - \delta_{min}$ over all pixels

$$VP_Big = a$$
, $VP_Small = c$, $VN_Comp = a$, $th = 1300 mV$

How does δ_{max} relate to δ_{min} ?

$$VP_Big = 8$$
, $VP_Small = 8$, $VN_Comp = a$, $th = 1300$ mV

29/31

How does δ_{max} relate to δ_{min} ?

$$VP_Big = a$$
, $VP_Small = c$, $VN_Comp = a$, $th = 1300 \text{mV}$

Up next

- See if there is correlation of fit results with pixel position on the chip (row, col)
- Do parametric analysis for DAC values
- Find the source of stray timestamps
- Find out which part of the circuit is influenced the most by manufacturing variance (I assume it is C)
- Any suggestions?

