
LSS Bispectral Estimation with MODAL
David Gwilym Baker1
1DAMTP, University of Cambridge

Abstract and Background

This poster presents the MODAL bispectral estimator for LSS (Large

Scale Structure) datasets. It is an efficient, and highly accurate esti-

mator with a multitude of use cases. Here we draw particular note

to MODAL’s ability in:

Reconstructing given theoretical templates.

Producing fully generic Non-Gaussian (NG) inflationary field

perturbations at bispectral level.

Extracting highly accurate fNL parameters from simulated and

observed datasets.

More widely MODAL is being developed for estimation in a num-

ber of different domains, such as the CMB and for projected-LSS.

MODALwas first introduced in [1]. The LSS component of MODAL

that I have worked on has been implemented in C++ with full sup-

port for MPI and Threaded functionalities in hybrid and is highly-

scalable on HPC cluster systems.

With new surveys such as Euclid and LSST allowing us to probe cos-

mological observables to greater precision, we start to look to LSS

for frontier constraints on cosmologies. The ability to accurately

and quickly extract statistics at bispectral level from LSS datasets

(which are naturally nonlinear) and beyond is critical to adequately

advantage this new data. Whether this be in the context of pri-

mordial non-gaussianity (PNG) constraints, cosmological parameter

constraints, or for astrophysical applications at smaller scales.

Introduction to MODAL for LSS

The MODAL methodology is predicated on an efficient compres-
sion of bispectral statistics into a functional basis expansion with
the requisite symmetries:

BSN (k1, k2, k3) =
i=nmodes∑

i=0
cQ

i · Qi =
j=nmodes∑

j=0
cR

j · Rj , BSN =
(√ ∏

i ki∏
i P (ki)

)
B

Where c ∈ {α, β} are expansion coefficients dependent on

whether we compress a theoretical template (α’s) or a data ex-

tracted bispectrum (β’s), and P /B the relevant power/bispectrum.

A signal-to-noise (SN) weighting is used throughout our estima-

tion pipeline to reduce dynamic range related error accumulation.

Our Qn are polynomial functions from a class that span VB:

VB :
{

k1 + k2 ≥ k3 + (2 perms)
kmin ≤ ki ≤ kmax , i = {1, 2, 3}

}
For numerical reasons, we choose these Qn to be constructed

from Shifted Legendre Polynomials (SLP), which are complete on

[0, 1] × [0, 1] × [0, 1] ⊃ VB; a rescaling from kmax → 1 is required

w.l.o.g. Our Qn have to obey bispectral symmetries, hence:

Qn (k1, k2, k3) = q
{r

(k1)qs
(k2)qt}

(k3) , qm(x) ∈ Pm (2x − 1) = SLP

With n −→ {r, s, t} a mapping from modes to polynomial orders.

The key advantage of the MODAL methodology is that compres-

sion of B into Qn is constructed separable in {ki}. For datasets

with N points along each direction, the typical FFTmethod scales

as O (N 6) whereas MODAL scales as O (nmodes · N 3)[2].

For convenience we also introduce an orthonormal basis, con-

structed out of linear combinations of Qn on the bispectral do-

main: Rn :=
∑a=nmodes

a=0 λnaQa. For this transition we first need to

determine our inner product space for the Qn:

〈Qa, Qb〉VB
= Γab ↔ CholeskyDecomp (Γ) = λ−1

The final step is to determine expressions for the coefficients

{α, β} for each use case, this is covered in other sections.
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Figure 1. An analytic visualisation of the inner product space defined by

〈Qa, Qb〉VB
for 5000 modes, computed analytically. Note near orthogonality.

Estimation Fidelity Probes

We wish to quantify how good our MODAL bispectral estimation is. For two

functions on VB , F1 and F2, we define shape and amplitude correlators:

S := 〈F1, F2〉√
〈F1, F1〉 〈F2, F2〉

, A (F1, F2) :=

√
〈F1, F1〉
〈F2, F2〉

We also define total correlator, T , and the usual ‘fnl’ estimate in our framework:

1 − T (F1, F2) :=
[

〈F2 − F1, F2 − F1〉
〈F2, F2〉

]1/2
, fnl := 〈F1, F2〉 / 〈F2, F2〉

Note that these quantities are not always argument symmetric, usually we

choose F2 to be the (theoretical) template we wish to compare some MODAL

reconstruction against.

Theoretical Validation

In order to compute the coefficients needed for a MODAL expan-

sion of some bispectral template F we need to compute:

iα
b := 〈F, Qb〉VB

=
a=nmodes∑

a=0
αa 〈Qa, Qb〉VB

=
a=nmodes∑

a=0
αaΓab

Both Q and F naturally live on VB and thus this integral can be

computed without further analysis. Typically the integral over

VB is analytically intractable and thus numerical integration tech-

niques need be used; for numerical reasons the exact implemen-

tation turns out to be rather important, but that is beyond the

scope of this poster.

Given a iα
b , we can solve for αb with a simple linear solve (or in-

version):

iα
b =

a=nmodes∑
a=0

αaΓab
Linear−−→
Solve

αb =⇒ BF ∼
a=nmodes∑

a=0
αQ

a Qa (k1, k2, k3)

Using a reconstruction grid size of 512 points/dimension, we

highlight the fNL reconstruction % error for the three well-known

inflationary bispectral shapes, as a function of # terms included in

our MODAL expansion:

Shape: Local Equilateral Orthogonal ∼ CPU hours

10 modes 3E-1 7E-3 2E-1 0.2

50 modes 1E-3 1E-4 4E-3: 0.4

100 modes 4E-4 3E-4 1E-3 0.7

500 modes 2E-6 4E-5 7E-5 2.7

Table 1. MODAL reconstruction fidelity for theoretical templates.

CPU hours refers to extraction component of compute.

The system used 2 MPI ranks + 16 OpenMP threads.

Note that the profile is not monotonically improving; a ‘flaw’ re-

sultant from looking at fNL with MODAL.

Although requiring more advanced numerical stability optimisa-

tions, MODAL estimation in the theoretical domain has been per-

formed in our pipeline across a wide variety of shapes with up to

10000 modes. In practise there is no apparent constraint on de-

sired accuracy bar a compute time balance.

Figure 2. Local, Equilateral, and Orthogonal shapes, reconstructed with 10

modes and 500 modes. The latter is ‘perfect’ by eye.

Non-Gaussian IC Generation for N-body Codes

MODAL can also be used to modify a gaussian dataset with given

powerspectrum to have an arbitrary bispectral shape[3]. This ‘Ini-

tial Condition (IC) generation’ is useful in the context of primordial

non-gaussianity searches and mock galaxy catalogue generation.

We take some primordial, inflationary, gaussian field ΦG, and con-

sider a perturbation to it:

ΦNG = ΦG +
(

1
2

)
FNLΦB

Here FNL is a generalisation of fNL to generic bispectral shapes in

a manner that preserves the L2-norm of B over VB with shape.

Comparison with familiar separable local bispectral perturbations
in fourier space, yields a derivation process:

〈BTemplate/BLocal, Qa〉 =⇒ α̂a , M̂a (x) :=
∫ [

d
3k

(2π)3

]
eik·x {ΦG (k) qa (k)}

And we combine to give our perturbations:

ΦB =
a=nmodes∑

a=0
α̂a · q{r(k1)

∫ [
d

3x
]

eik1·x
{

M̂s (x) M̂t} (x)
}

+2 perms

We do not use our SN-weighting in this computation. Testing

shows that theoretical reconstruction accuracy from α̂ matches

whatwe ultimately extract from our fieldsΦNG very closely, quanti-

fying expectations of bispectrum encoding in our ICwith nmodes.

Simulated Data Validation

Although the above tools are useful, clearly the MODAL appli-
cation with the most promise for cosmological inference is that
where MODAL is used to extract bispectra from simulated and
real datasets. In order to do this, we derive an integral equality:

〈F1, F2〉VB
= 1

8π2

∫ [
d3k1

(2π)3
d3k2

(2π)3
d3k3

(2π)3

]{
(2π)6δD(k1 + k2 + k3)F1F2

k1k2k3

}
The maximum likelihood estimator for our data (δ) bispectrum,

B̂data, in the limit of weak non-gaussianity can be shown to be:

B̂data = δk1δk2δk3 − 3 〈δk1δk2〉 δk3 , B̂SN
data =

(√
k1k2k3

P (k1)P (k2)P (k3)

)
B̂data

Our desired inner product is 〈B̂SN
data, Qb〉VB

; we thus leverage our

separable mode expansion and define:

Ma (x) :=
∫ [

d
3k

(2π)3

]
eik·x

{
δkqa (k)√

kPδ (k)

}
Our inner product is then:

iβ
b := 〈B̂SN

data, Qb〉VB
= (2π)3

∫ [
d

3x
] {

MrMsMt − 3〈M{r
M

s〉Mt}

}
If we assume that the ‘linear term’ on the RHS is negligible (true

for simulations, sometimes true for real data), this simplifies our

compute significantly. As per the α pipeline, we can linear solve

to obtain βQ or obtain βR directly via a λ transform.

To validate full consistency of our pipeline, we can generate an en-

semble of Gaussian Random Field (GRF) initial data, imbue each

with a set arbitrary bispectrum using MODAL, then analyse the

resultant δNG with our β pipeline estimator. The extent to which

we are able to recover an input fNL gives us some insight as to the

intrinsic fidelity of our MODAL estimator for simulation and ob-

servable datasets - there will naturally be other noise sources and

sample size related constraints in those cases, indep. of MODAL.

Below we demonstrate a MODAL estimated reconstruction of a
Tree Level gravitational bispectrum imbued onto an ensemble of
GRF initial data as a function of grid size. 500 modes are used for
IC generation and data bispectrum extraction.

Grid Size T error (samples) ∼ CPU hours/IC ∼ CPU hours/βs

128 (72 proc) 1.5 (100) 0.1 0.0

256 (72 proc) 0.38 (100) 1.1 0.0

512 (288 proc) 0.22 (100) 11.6 0.5

Table 2. Tree level bispectrum IC generated and extracted from simulated

data with MODAL using 500 modes. CPU hours refers to GRF+non-Gaussian

IC generation, and bispectral extraction for the ensemble.

N.B. there is imperfect parallelisation scaling.

T is a very stringent test of performance; it roughly corresponds

to the average error in the estimated bispectrum v.s. IC template

target at any {k1, k2, k3} position in VB. The error in T always

exceeds that in fNL.

Figure 3. The theoretical tree bispectrum (left) compared against the average

extracted from 100 IC generations on a 512 grid (right).

Conclusions and Future work

The sections above clearly demonstrate a versatile and effective

compressed MODAL pipeline for generation and extraction of bis-

pectral statistics in LSS datasets. Our extraction pipeline is comfort-

ably fast enough for use cases with andwithout vast HPC resources.

Our IC pipeline is fast in comparison to the N-body codes that they

naturally supplement.

In coming months we intend to use our high fidelity MODAL es-

timator to evaluate mock catalogues for upcoming surveys, probe

improved methods of IC setting in N-body simulations, and for the

extraction of EFT parameters. In future we intend to publish a pub-

lic version of the code(s) for the wider cosmological community to

use in their analyses.
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