Effective Field Theory of Structure Formation Lecture 4: Redshift Space Distortions and Observations

z.vlah

Tonale Winter School on Cosmology 2023

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Outline:

- 1. Redshift Space Distortions
- 2. Velocity-moment expansion of RSD
- 3. Cosmological Parameter Constraints: Simulations Challenge
- 4. Cosmological Parameter Constraints: Boss Galaxy Survey
- 5. Summary

Selected bibliography:

- Large-Scale Galaxy Bias, Desjacques et al., 2018, 1611.09787
- Lectures on EFTofLSS, Senatorel, (online notes)
- Modern Cosmology, Dodelson & Schmidt, 2021
- LSS of the Universe and PT, Bernardeau et al., 2002, astro-ph/0112551

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Redshift Space Distortions

Galaxy field without RSD, and with RSD included.

[Feldman, 2002]

Redshift Space Distortions

Objects in redshift-space:

$$\boldsymbol{s} = \boldsymbol{x} - \boldsymbol{f}(\hat{\boldsymbol{n}} \cdot \boldsymbol{u})\hat{\boldsymbol{n}},$$

Density in redshift-space:

$$\delta_s(k) = \left(b_1 + f\left(\hat{n} \cdot \hat{k}\right)^2\right) \delta(k).$$

(日) (四) (日) (日) (日)

Generates sensitivity of correlators to velocity field.

2. Velocity-moment expansion of RSD

Redshift Space Distortions: Velocity Expansions

$$1 + \delta_s(\boldsymbol{s}) = \int d^3x \, (1 + \delta_g(\boldsymbol{x})) \delta^{\mathrm{D}}(\boldsymbol{s} - \boldsymbol{x} - \boldsymbol{u}) \,,$$

where u = really stands for $(\hat{n} \cdot u)\hat{n}$. In Fourier space

$$(2\pi)^{3}\delta^{\mathrm{D}}(\boldsymbol{k}) + \delta_{s}(\boldsymbol{k}) = \int d^{3}x \; (1 + \delta_{g}(\boldsymbol{x}))e^{i\boldsymbol{k}\cdot(\boldsymbol{x}+\boldsymbol{u})}$$

Power Spectrum

$$P_s(\boldsymbol{k}) = \int d^3 r \; e^{i\boldsymbol{k}\cdot\boldsymbol{r}} \left\langle \left(1 + \delta_g(\boldsymbol{x}_1)\right) \left(1 + \delta_g(\boldsymbol{x}_2)\right) e^{i\boldsymbol{k}\cdot\Delta\boldsymbol{u}} \right\rangle_{\boldsymbol{r}=\boldsymbol{x}_1-\boldsymbol{x}_2}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Eulerian approach - expansion in powers/moments of Δu .

Eulerian PT approach to RSD

• Eulerian approach (EPT):

based on the velocity moment expansion:

$$P_s(k) = \sum_m \frac{i^m}{m!} k_{\hat{n}}^m \left\langle (1+\delta_1)(1+\delta_2)\Delta v_{\hat{n}}^m \right\rangle'$$

where IR-resummation can and is be done a posteriori via wiggle-no-wiggle split.

• How do FoG effects enter into the predictions small scale velocity dispersion can modulate the long-density fluctuations

$$\langle (1+\delta_1)(1+\delta_2)(\Delta v_{\hat{n}}^2)' \sim \langle v_{\hat{n}}^2 \rangle P_L(\mathbf{k}) \to \sigma_v^2 \mu^2 k^2 P_L(\mathbf{k})$$

 Lagrangian approach (LPT): RSD mapping contained in the displacement field:

$$\boldsymbol{\Psi}_s = \boldsymbol{\Psi} + f(\hat{n}\cdot\boldsymbol{u})\hat{n} = \boldsymbol{\Psi} + f(\hat{n}\cdot\dot{\boldsymbol{\Psi}})\hat{n}$$

Application to Data: N-body & surveys

http://github.com/sfschen/velocileptors [Chen, ++:20]

• Eulerian (EPT), Lagrangian (LPT),

Features:

- fast loop evaluations (FFT) all codes take seconds,
- python, user-friendly, implementation. Requires numpy, scipy and pyFFTW. Application to N-Body Data: Mock galaxy sample

Application to Data: N-body & surveys

Blind Challenge:

[Chen, ++:20]

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

"PT Blind Challenge" Data - 3840 Mpc/h, 3072^3 particles, with BOSS-like (DESI) signals [Nishimichi++;20]

https://www2.yukawa.kyoto-u.ac.jp/~takahiro.nishimichi/data/PTchallenge/

Application to Data: N-body & surveys

Blind Challenge:

[Chen++:20]

All codes publicly available: http://github.com/sfschen/velocileptors Application to upcoming surveys DESI, LSST, EUCLID

Mock constraints for z_3 ; $k \in (0.02, 0.20)h/Mpc$

	P_{ℓ}	$P_\ell + \mathrm{BAO}$
$\ln(10^{10}A_s)$	3.09 ± 0.18	3.10 ± 0.17
Ω_m	0.294 ± 0.017	0.298 ± 0.014
$H_0 \; [\mathrm{km/s/Mpc}]$	67.9 ± 1.7	67.8 ± 1.3
σ_8	0.797 ± 0.062	0.810 ± 0.063

True cosmology is $\Omega_m = 0.307115$, $H_0 = 67.77$, $\sigma_8 = 0.8288$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 - の々で

BOSS galaxy $\mathsf{PS}{+}\xi$

	P_{ℓ}	$P_{\ell} + BAO$	Planck
$\ln(10^{10}A_s)$	2.84 ± 0.13	2.81 ± 0.12	3.044 ± 0.014
Ω_m	0.305 ± 0.01	0.303 ± 0.0082	0.3153 ± 0.0073
$H_0 \; [\rm km/s/Mpc]$	68.5 ± 1.1	69.23 ± 0.77	67.36 ± 0.54
σ_8	0.738 ± 0.048	0.733 ± 0.047	0.8111 ± 0.0060

э

500

э

Two independent redshifts & pre- and post- recon.

Recent applications to the current data surveys

Cosmological Parameters from the BOSS:

[Ivanov++:19, D'Amico++:19, ...]

$$\begin{split} H_0 &= (67.9 \pm 1.1) \text{ km/s/Mpc}, \ \Omega_m = 0.295 \pm 0.010, \quad \sigma_8 = 0.721 \pm 0.043 \\ \text{Current } \nu \text{ mass: } \& < 0.16 \text{eV} \text{ (Planck+LSS)} < 0.26 \text{eV} \text{ (Planck)} \end{split}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 - の々ぐ

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ○ ○ ○ ○