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Galaxies and galaxy halos

[Desjacques++:18]



Galaxies and galaxy halos

[Desjacques++:18]



Galaxies and their relation to dark matter distribution

Galaxies form at high density peaks of matter density:

rare peaks =) higher clustering!
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Tracer detriments the amplitude: Pg(k) ⇠ b2Pm(k) + . . . on large scales.
Understanding galaxy bias is crucial for understanding the galaxy clustering.
Coe�cients incorporate complicated small scale (UV) physics:

• dark matter halo formation & merger history
• chemistry and cooling processes & background radiation
• feedback processes (SN, AGN, . . . )
• (and more ... )



Canonical approaches to galaxy biasing

Local biasing model: relation to dark matter
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Quasi-local (in space): [McDonald+:09]
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with e↵ective (bias) coe�cients cl and

operators:

[from Desjacques++:18]
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where � is the gravitational potential, and white noise (stochasticity) ✏.

Complete set set of operators including non-locality in time e↵ects!

[Senatore:14,Angulo++:15, Desjacques++:18, ...]



Scalar field biasing: e↵ective approach

[Desjacques++:18, ...]

Alternative systematisation in terms of derivatives of potential � :
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– series allows one to estimate the higher order (theory) errors
– coe�cients - physics from the R⇤ scale (some degeneracies)

Tracer field is then given
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E↵ective field theory of biasing

Non-local (time) and quasi-local (spece) relation of tracers to the dark
matter [Senatore 2014, Mirbabayi et al, 2014]
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[from Desjacques++:18]

Alternative - all e↵ects chaptered in Lagrangian approach.

Assembly bias e↵ects captured in the scheme.



E↵ective field theory of biasing

New physical scale kM ⇠ 2⇡
�
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.

Can be di↵erent then kNL. Interesting case kNL � kM !

We look at the correlations at k ⌧ kM .
Each order in perturbation theory we get new bias coe�cients:
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Emergence of degeneracy: choice of most convenient basis

Renormalization! (takes care of short distance e↵ects at long distances)
In practice, c̃�,1 is a bare parameter, the sum of a finite part and a counterterm:

c̃�,1 = c̃�,1, finite + c̃�,1, counter,

After renormalization we end up with using 7 finite bias parameters bi.

Observables: Phm, Phh, Bhmm, Bhhm, Bhhh



Power Spectrum

2-point observables:
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We also now know how to add also the IR-resummation! (Long displacement)

[Desjacques++:18]



Adding baryonic e↵ects

Baryons at large distances described as additional fluid component
(short distance physics is encoded in an e↵ective stress tensor)
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where � is defined by Poisson equation and:
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Similar expressions valid when including neutrinos, clustering dark energy . . .



Adding Non-Gaussianities

For non-Gaussian fluctuations present only in the initial conditions

and e↵ect described by the squeezed limit, kL ⌧ kS of correlations.

After horizon re-rentry, but still early enough to neglect all gravitational
non-linearities, the primordial density fluctuation are given by
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In the presence of primordial non-Gaussianities, additional components:
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Non-linear dynamics and galaxy bias

- Eulerian bias: relates final d.m. density field and the final halo density
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- Lagrangian bias: relates initial d.m. density field and the proto-halo density
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A new look at bias expansion: “Bootstrap in LSS”

A new idea: [Fujita+:2020]

(I.) construct a bias of operators from linear density - as a Monkey would,

(II.) impose physical constraints - consistency relations in LSS
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A similar approach also done in [D’Amico++:2021] .



A new look at bias expansion: “Bootstrap in LSS”

A new idea:

(I.) construct a bias of operators from linear density - as a Monkey would,

(II.) impose physical constraints - consistency relations in LSS

How do we describe the system for a tracer?

Balance equations:

@⌧�↵(x) +r · ([1 + �↵]u↵) (x) = S�[�](x),

@⌧u↵(x) +Hu↵(x, ⌧) + u↵(x, ⌧) ·ruh(x, ⌧) = �r�(x, ⌧) + Su[�](x),

The lhs. terms are:

r2�(x) / �m(x),

and small scale sources S�(x), Su(x) typically suppressed by some scale k⇤.

The key notion is the separation of scales in the system, i.e. gravity dominates

on large scales.



I. Specifying the non-linear terms

This is the “Monkey part”:

Continuity eq. : @⌧� + (linear terms) = ��✓ � @i�
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✓,
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✓,

where � is the density and ✓ is the velocity divergence.
Solution is constructed by the iterative “Monkey” process
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where X and Y are drown from the list of the lower order operators.

New bias basis:
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In the paper we keep terms up to the third order terms in PT.



II. Constraining the coe�cients

Consistency relations of LSS are direct consequence of the equivalence
principle and adiabatic initial conditions:
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, as k ! 0.

Tree-level statistics is the simplest way to impose the constraints:

lim
k!0

h�k�↵q1
��q2

i0 =
⇣
a1

(↵)b2
(�) � a1

(�)b2
(↵)

⌘ k · q1
2k2

P`(k)P`(q1) +O(k0),

By requiring the IR-divergent term to vanish we get:
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The C(⌧) is universal, tracers independent, function of time.



Fixing the dynamical degrees of freedom

New bias expansion:

�g = a1
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How to determine the universal coe�cients C(⌧)?

Easy way is to fix it to the simples ‘tracer’ of dark matter: dark matter!

C = 1.

In general these coe�cients reflect dynamics and modifications of GR!
Example: clustering quintessence

C = 1� ✏(⌧),

where ✏ depends on the quintessence field and ⌧ .
This motivates the construction on the near-optimal estimators for C.



Ellipsoids, 2-tensors, galaxy shapes

How can we describe the field of ellipsoids?
Ellipsoid – 3 parameters;
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Rotation matrix – 3 Euler angles;
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Ellipsoid equation;
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Biasing of shapes in 3D: e↵ective approach

Expansion of the field of galaxy shapes:
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O

TF[Oij ](x).

where the list of operators (up to higher derivatives and stochastic
contributions) is
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Derivative operators relevant for leading power spectrum corrections
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Tensor fields and galaxy intrinsic alignments

Expansion of the field of galaxy shapes:

gij(x) =
X

O

coOij(x),

with biasing operator basis
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Relevant for: galaxy intrinsic alignment and galaxy lensing.

Formalism can be used as a probe of cosmological collider physics.


