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Biased tracer in Eulerian picture

Non-locality in time and the equivalence of basis
Renormalization of bias coefficients

Bootstrap approach to galaxy bias

Biasing of shapes
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Galaxies and galaxy halos

[Desjacques++:18]
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Galaxies and their relation to dark matter distribution

Galaxies form at high density peaks of matter density:

rare peaks = higher clustering!
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Tracer detriments the amplitude: P, (k) ~ b>Py, (k) + ... on large scales.
Understanding galaxy bias is crucial for understanding the galaxy clustering.
Coefficients incorporate complicated small scale (UV) physics:

dark matter halo formation & merger history

chemistry and cooling processes & background radiation

feedback processes (SN, AGN, ...)

(and more ...

)



Canonical approaches to galaxy biasing

Local biasing model: relation to dark matter
Oh = 50 + 65252 + 65353 +... [Fry+:93]

Quasi-local (in space):  [McDonald:09]

On(x) = cs50(x) + c5262 () + c556° ()
+ 282 (x) + c520(x) s () + coe + ...,

with effective (bias) coefficients ¢; and
operators:

1k [from Desjacques++:18]
sij(:c) = 818J¢)($> — 5(5”(5(%),

where ¢ is the gravitational potential, and white noise (stochasticity) €.

Complete set set of operators including non-locality in time effects!
[Senatore:14,Angulo++-:15, Desjacques++:18, ...]



Scalar field biasing: effective approach

Alternative systematisation in terms of derivatives of potential ¢ :

HE;]_SQ kb,
with higher operators Oy:
(1) emt],
@ ef@)?], (wm])
() )], () em], (w[m]) e,

and additional derivative operators RZ2V2tr[IIM], .. ..

— series allows one to estimate the higher order (theory) errors
— coefficients - physics from the R, scale (some degeneracies)

Tracer field is then given

So(x) = b5 tr[0y] (),

o



Effective field theory of biasing

Non-local (time) and quasi-local (spece) relation of tracers to the dark

matter [Senatore 2014, Mirbabayi et al, 2014]
€T =Ty

S (@, 1) ~ / a H() [65(t,t) 6(a, )

+ e (t, ) 8(xn, t')? + e (t, 1)) 82 (xg, ') + ..

+5325(f7t/) T”é(iL‘ﬂ, )—‘r:|

Fields evaluated on a past path:

zq(z, 7, 7)) =x — / dr" (" xq(x,7,7")) 7= z4(0)
™ [from Desjacques++:18]

Alternative - all effects chaptered in Lagrangian approach.

Assembly bias effects captured in the scheme.



Effective field theory of biasing

New physical scale ks ~ 27 (47’7%2)1/3
Can be different then k. Interesting case kyp > kas !

We look at the correlations at k < kj;.
Each order in perturbation theory we get new bias coefficients:

on(k,t) = /6571 {Dtd(l)(k) + flow terms} + /65)2 [Dfé(Q)(k) + flow terms} +...
t t
=c5,1 {(5(1)0{) + flow terms] + ¢s5.2 {5(2)(1@) + flow terms} +...

Emergence of degeneracy: choice of most convenient basis

Renormalization! (takes care of short distance effects at long distances)
In practice, ¢5,1 is a bare parameter, the sum of a finite part and a counterterm:

Cs5,1 = €41, finite + C5,1, counter;

After renormalization we end up with using 7 finite bias parameters b;.
Observables: th, Phh. mam. thm, thh



Power Spectrum

2-point observables:

Py = b1 Py, + bs2 Py 52 + by2 Pyay.2 + (3rd order) — by2k?/k3, Pr, + (noise)

ng = b%Pmm + Z bobo Poor + (3I‘d order) — by /Vz kQ/k]QwPL + (noise) .
0e{s2,s2}

We also now know how to add also the IR-resummation! (Long displacement)
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Adding baryonic effects

Baryons at large distances described as additional fluid component
(short distance physics is encoded in an effective stress tensor)

t 32 ,t/
On(x,t) :/ dt’ H(t") [532¢(t,tl) m + s, (£, ") wy, Oy (x4,

vt (xap, t')
H(t)

aivz(wﬂ,w t/)

_ ) / ;
Hay T Com (BT w

—+ é@ivi (t, tl) We

N

where ¢ is defined by Poisson equation and:

.
zap(z,7,7) = —/ dr" vy (7", zg (2, 7,7")) |

T/
T

Taclz, 7, 7)== 7/ dr" v (", zg(x, 7, 7"))

T/

Similar expressions valid when including neutrinos, clustering dark energy . ..



Adding Non-Gaussianities

For non-Gaussian fluctuations present only in the initial conditions
and effect described by the squeezed limit, k;, < kg of correlations.

After horizon re-rentry, but still early enough to neglect all gravitational
non-linearities, the primordial density fluctuation are given by

W (kg, tin) =~ 0,(ks) + fxnd(kr, tin)dy (ks — kL, tim)
where (Z)(kzL,tin) ~ (k) (kL) d4(kr,tin) with a transfer function T'(k).
In the presence of primordial non-Gaussianities, additional components:
On(®@,t) = fun $@alt, tin)stin)
x /tdt’ H(t) [ O(t,t) + e (£, ) WJF

~ t
+ fui ¢(mﬁ(t7tin),tin)2/ dt’ H(t") [Jr



Non-linear dynamics and galaxy bias

- Eulerian bias: relates final d.m. density field and the final halo density
2
dg(x) = c§é(x) + 5o 8% (x) + oo (@) +... + 2575 6(x) + “stochastic” +
- Lagrangian bias: relates initial d.m. density field and the proto-halo density

‘ ‘ 92
8e(q) = c501,(q) + Cf).z 82 (q) + ciz (@) +... + Céza +20r(q) + “stochastic” + ...,
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A new look at bias expansion: “Bootstrap in LSS”

A new idea:
(I1.) impose physical constraints - consistency relations in LSS

final tracer density
~, biasing
final matter density
~
initial matter density

A similar approach also done in

(I.) construct a bias of operators from linear density - as a Monkey would,

biasing




A new look at bias expansion: “Bootstrap in LSS”

A new idea:
(I.) construct a bias of operators from linear density - as a Monkey would,
(II.) impose physical constraints - consistency relations in LSS

How do we describe the system for a tracer?

Balance equations:

0r0a(x) + V - ([1+ da] ua) (x) = S5[6](z),
a'rua(w) +Huo(®,7) + ua(x,7) - Vup(z,7) = =Vo(z,7) + 5,[d](z),

The lhs. terms are:
V() o< dpn (),
and small scale sources Ss(x), S, (x) typically suppressed by some scale k..

The key notion is the separation of scales in the system, i.e. gravity dominates
on large scales.



|. Specifying the non-linear terms

This is the “Monkey part”:

Continuity eq.: 00 + (linear terms) = —§6 — 0; 532 0,
Euler eq. : 9.0 + (linear terms) = 886 686

where ¢ is the density and @ is the velocity divergence.
Solution is constructed by the iterative “Monkey” process

0; 0;0; 80}

0? Y, 02 02

where X and Y are drown from the list of the lower order operators.

{XY 0iX =

New bias basis:

(5a = (1,16,;

0, 2:0;

0;0;
82(5L+bg £ J

82

+ 0107 4+ 020,01, 8201 + ...

In the paper we keep terms up to the third order terms in PT:



Il. Constraining the coefficients

Consistency relations of LSS are direct consequence of the equivalence
principle and adiabatic initial conditions:

D(na) k- qa
D(n) k2

(6 (7)08, (11) ... 68, (n)) ~ —Pa(k,7)> (68 (m)...08 (nn)), as k— 0.

Tree-level statistics is the simplest way to impose the constraints:

. e% @ @ k “q1 0
fimfout5, 851" = (40 =0 D) S PP + O,

By requiring the IR-divergent term to vanish we get:

by(@)  p,(B)
o@ @ )

The C(7) is universal, tracers independent, function of time.



Fixing the dynamical degrees of freedom

New bias expansion:

8327' ) L) + (3rd order)

8 = a1|0p +C Ddr Jyor| + 0103 + by (0

How to determine the universal coefficients C(7)?

Easy way is to fix it to the simples ‘tracer’ of dark matter: dark matter!
C=1

In general these coefficients reflect dynamics and modifications of GR!
Example: clustering quintessence

C=1-—¢(7),

where € depends on the quintessence field and 7.
This motivates the construction on the near-optimal estimators for C.



Ellipsoids, 2-tensors, galaxy shapes
How can we describe the field of ellipsoids?
Ellipsoid — 3 parameters;
1/a®> 0 0
0
o= 0 1/® 0
0 0 1/
Rotation matrix — 3 Euler angles;
Rij(¢,0,¢) = T =RT'R"
Ellipsoid equation;
(x—aq) T (x—x,)=1
Tensor field:

Tij(@) = > T (a)0° (@ - @)

[e3



Biasing of shapes in 3D: effective approach

Expansion of the field of galaxy shapes:
gij(@) = b3 TF[0;)(=).
&)

where the list of operators (up to higher derivatives and stochastic
contributions) is

(1 TFOY]

() TR TR TR ),

3)  TROP] . TEmNoP] TR P e ],
TR TRL) ], T ()

Derivative operators relevant for leading power spectrum corrections

R2V*TF (M) .
ij



Tensor fields and galaxy intrinsic alignments

Expansion of the field of galaxy shapes:

gz] § Co zy

with biasing operator basis
[1]
(1 TEMY],
@ TE[WE), TE()), TR ]

Relevant for: galaxy intrinsic alignment and galaxy lensing.
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Formalism can be used as a probe of cosmological collider physics.



