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Physical Motivation: Quantum Physics in Extreme Conditions

+ QCD phase diagram

* non-equilibrium physics at strong-coupling

* (quantum) phase transitions in cold atom systems
* quantum systems 1n extreme background fields

» transition to hydrodynamics

* quantum gravity

extreme systems are extremely difficult to analyze quantitatively

extreme = strongly-coupled; high density; ultra-fast driving; ultra-cold;
strong fields; strong curvature; heavy 1on collisions; ...
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Physical Motivation: Quantum Physics in Extreme Conditions

+ QCD phase diagram

* non-equilibrium physics at strong-coupling

* (quantum) phase transitions in cold atom systems
* quantum systems 1n extreme background fields

» transition to hydrodynamics

* quantum gravity

extreme systems are extremel

y difficult to analyze quantitatively

extreme = strongly-coupled; hig]

1 density; ultra-fast driving; ultra-cold;

strong fields; strong curvature; heavy 1on collisions; ...

- perturbation theory

1s of Iimited use

* non-perturbative semi-classical methods: “instantons”
- non-perturbative numerical methods: Monte Carlo

» asymptotics

“resurgence’’: new form of asymptotics that unifies these approaches

technical problem: what does a quantum path integral really mean?



The Feynman Path Integral

<$t‘€_iﬁt/h‘aﬁo> _

QM: /Dx(t) exp }—15[33(15)]

QFT: [ DAY exp ;;S[A(x“)]

e stationary phase approximation: classical physics

e quantum perturbation theory: fluctuations about trivial saddle point

* other saddle points: non-perturbative physics

 resurgence: saddle points are related by analytic continuation, so
perturbative and non-perturbative physics are unified




Resurgence 1n Classical Optics

Stokes and supernumerary rainbows ...

photo: R. Bishop




Stokes and the Airy Function: “Stokes Phenomenon”

z — +00

Z — —O0



Stokes and the Airy Function: “Stokes Phenomenon”
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* 1ntegral cannot be evaluated without
contour deformation

» “Stokes transition” at z=0

* fluctuation expansions about saddles
must be divergent, and must be related

* underlies optics and WKB analysis




Analytic Continuation of Path Integrals

since we need complex analysis and contour deformation to
make sense of oscillatory integrals, it 1s natural to explore
similar methods for (infinite dimensional) path integrals

/ Da

t) exp |~ S[z(t)]| - - /Dx(t) exp

why 1s this important ?

Minkowski versus Euclidean path integrals

“sign problem” of finite density quantum systems
non-equilibrium quantum transport

real-time quantum dynamics
Euclidean/Minkowski quantum gravity

1
— = S[a(t)

 phase transitions as the Stokes phenomenon (Lee-Yang)




Resurgent Asymptotics

resurgence: “new’’ 1dea in mathematics
Dingle 1960s, Ecalle, 1980; Stokes 1850

perturbative series ——  ‘‘trans-series”

f(h) =) cp P L L L Clipy € " BP (Inh)

physics: ¢ unifies perturbative and non-perturbative physics
* QFT “multi-instanton calculus™

math: e trans-series is well-defined under analytic continuation
 expansions about different saddles are related
» exponentially improved asymptotics
 with 1terations, all problems are solved by trans-series
» dynamical systems, differential equations, fluids, ...




Resurgent Functions

“resurgent functions display at each of their singular points
a behaviour closely related to their behaviour at the origin.
Loosely speaking, these functions resurrect, or surge up - 1n
a slightly different guise, as it were - at their singularities”

J. Ecalle, 1980

theorem/claim: this structure occurs for all “natural” problems



Resurgence 1n Exponential Integrals

CC 2.

steepest descent integral through saddle point “n

1) (1) = / T ok F@) _
C

) J/1/h

all fluctuations beyond the Gaussian approximation:
0 (1 T Br /
Z ;

e I () (1)




Resurgence 1n Exponential Integrals

steepest descent integral through saddle point “n”:

[(n)(ﬁ) — / dr et F(@) — ! o7 In T(")(h)
o 1/
all tfluctuations beyond the Gaussian approximation: e
T (R) ~ ST g %
() EZ:O -

straightforward complex analysis implies:

universal large orders of fluctuation coefficients: (an = [ — fn)
1) (£1) | F (Frm)’
(n), pm) . _Fnm pm) nm (m)
" 27 i %: (Brm)” |7 (r—1)""1 (r—1)(r—2) ° "




Resurgence 1n Exponential Integrals

steepest descent integral through saddle point “n”:

[(n)(ﬁ) — / dr et F(@) — ! o7 In T(")(h)
o 1/
all tfluctuations beyond the Gaussian approximation: e
T (R) ~ ST g %
() EZ:O -

straightforward complex analysis implies:

universal large orders of fluctuation coefficients: (an = [ — fn)
1) (£1) | F (Frm)’
(n), pm) . _Fnm pm) nm (m)
" 27 i %: (Brm)” |7 (r—1)""1 (r—1)(r—2) ° "

fluctuations about different saddles are quantitatively related !!!




Resurgence 1n Exponential Integrals

canonical example: Airy function: 2 saddle points
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Resurgence 1n Exponential Integrals

canonical example: Airy function: 2 saddle points

T ( 1)TF(7"+ %)F(?"Jr %) _ <(1 5 38 | 85085
" o (27) (%)rr! ' 4874608 6635527

\

large orders of fluctuation coefficients:

(r—1)! A5 1 4y 1
L~ e (1 (§> 48 (r—1) <3> 1608 (r = {r =2

generic “‘large-order/low-order” resurgence relation




Resurgence 1n Exponential Integrals

canonical example: Airy function: 2 saddle points

T ( 1)TF(7"+ %)F(?"Jr %) _ <(1 5 38 | 85085
" o (27) (%)TT! 7 487 4608° " 6635527

large orders of fluctuation coefficients:

p =Dt 4N S T4 " 38 :
ST (1 (3> 48 (r—1) <3> 1608 (r = {r =2

generic “‘large-order/low-order” resurgence relation

amazing fact: this generic large-order behavior has been observed 1n
infinite dim. path integrals in matrix models, QM, QFT, string theory, ...

the only natural way to explain this 1s via analytic
continuation of path integrals




Decoding a Path Integral as a Trans-Series

/DA en Sl = Z e 7 SMAwhimble] (fluctuations) x (qzm)

non-perturbative

perturbative

quasi-zero-mode

* expansions along different axes must be quantitatively related
* expansions about different saddles must be quantitatively related




Rayleigh-Schrodinger Perturbation Theory

nontrivial physics problems are rarely solvable

perturbation theory

hard problem = easy problem + “small correction”

(Ho +€eH') ¢ = Ev

E1 = (Yo | H |¢o)

H.HERGER




Rayleigh-Schrodinger Perturbation Theory

nontrivial physics problems are rarely solvable

perturbation theory

hard problem = easy problem + “small correction”

(Ho +€eH') ¢ = Ev

E1 = (Yo | H |¢o)

simple, versatile,
intuitive,
and 1t works

e.g. Zeeman, Stark, ... nenaer e



Quantum Electrodynamics (QED)

Nobel Prize 1965: Tomonaga, Schwinger, Feynman

“renormalization’:
finiteness of
perturbation theory
term-by-term

_9 1 2 3 4 5
(g—) =2 03285 (2) + 11812 (2) - 1.9106(20) (£) +9.16(58) (=) + ...
theory

s s T s s

spectacular success of perturbation theory

[

[% (g — 2)]theory = 0.001 159652 181 78(77)

(9 = 2)] (yper = 0-001159652180 73(28) Gabrielse et al, 2008

BO| =



Quantum Chromodynamics (QCD)

Nobel Prize 2004: Gross, Politzer, Wilczek

“asymptotic freedom”
perturbation theory
at short distances

A A Deep Inelastic Scattering
oe e*te— Annihilation

¢  Hadron Collisions

® ® Heavy Quarkonia

3 ©
5(98) — 82 _NC_ P 02}
107 3 3 2
another spectacular success of =l TR
perturbation theory | 0 o

Q [GeV]



The Truth About Perturbation Theory

perturbation theory works, but 1t 1s generically divergent

this 1s actually a good thing !

and there 1s a lot of interesting physics behind this




PHYSICAL REVIEW VOLUME 85, NUMBER 4 FEBRUARY 15, 1952

Divergence of Perturbation Theory in Quantum Electrodynamics

F. J. Dyson
Laboratory of Nuclear Studies, Cornell University, Ithaca, New York

(Received November 5, 1951)

An argument is presented which leads tentatively to the conclusion that all the power-series expansions
currently in use in quantum electrodynamics are divergent after the renormalization of mass and charge.
The divergence in no way restricts the accuracy of practical calculations that can be made with the theory,
but raises important questions of principle concerning the nature of the physical concepts upon which the

theory is built.

F =ap+ae’ + ase* +aze® + ...
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The Struggle to Make Sense of Divergent Series
S )(" 0 )( e s

SERIEBVS DIVERGE NTIB»VSn |

Auflore LEON. EXLLERO.
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L. Euler, De seriebus divergentibus, Opera Omnia, I, 14, 585-617, 1760.



The Struggle to Make Sense of Divergent Series

O
“Borel summation” factorial: n! = / dte t "
0
f(z) = Z(—l)”n!aﬁ" = / dte™ "
0

n=0

convergent for all x > 0

Emile Borel



The Struggle to Make Sense of Divergent Series

O
“Borel summation” factorial: n! = / dt et "
0
flx) = i(—l)nn!aﬁ” = /OO dte " !
0 ]. ‘|‘ xt

n=0

convergent for all x > 0

1
f(—x) ngzon T /0 N

—>  Im|[f(—x)] ~ e 1/7

nonperturbative imaginary part !!!

Emile Borel



Zeeman & Stark Effects Revisited

Zeeman : divergent, alternating, asymptotic series
an ~ (—1)"(2n)!

physics: magnetic field causes level shifts (real)

Stark : divergent, non-alternating, asymptotic series
an ~ (2n)!

physics: e electric field causes level shifts (real)

 and 1onization (1maginary, exponentially small)



but not so fast ...

the story becomes even more interesting ...



Instantons and Non-Perturbative Physics

N
\ /. N\ /
% N —
_—
(phase transitions) (band structure)

exponentially small non-perturbative splitting due to tunneling

+  Yang-Mills theory and QCD have aspects of both systems (see

“renormalon’ discussion later)

+ physics of optical lattices and condensates



Instantons and Non-Perturbative Physics

N
\ /. N\ /
% N —
_—
(phase transitions) (band structure)

exponentially small non-perturbative splitting due to tunneling
Yang-Mills theory and QCD have aspects of both systems (see
“renormalon’ discussion later)

physics of optical lattices and condensates

surprise: perturbation theory 1s non-alternating divergent !

but these systems are stable 7?7




A Brilliant Resolution: “BZJ Cancelation Mechanism”

E. B. Bogomolny, 1980; J. Zinn-Justin et al, 1980

. , 257 ]
perturbation theory + Borel: — +1 exp r
non-perturbative instanton | 257

& anti-instanton interaction: ; —LEXp A

unphysical imaginary parts exactly cancel !

separately, each of the perturbative and non-perturbative computations
1s Inconsistent; but combined as a trans-series they are consistent




A Brilliant Resolution: “BZJ Cancelation Mechanism”

E. B. Bogomolny, 1980; J. Zinn-Justin et al, 1980

. , 257 ]
perturbation theory + Borel: — +1 exp r
non-perturbative instanton | 257

& anti-instanton interaction: 3 —LEXp A

unphysical imaginary parts exactly cancel !

separately, each of the perturbative and non-perturbative computations
1s Inconsistent; but combined as a trans-series they are consistent

tip-of-the-iceberg: perturbative/non-perturbative relations

“Resurgence”: cancelations occur to all orders; the
trans-series expression for the energy 1s real & well-defined



some extra magic...



Resurgence 1n Quantum Mechanical Instanton Models

trans-series for energy, including non-perturbative splitting:

o1 /32\Vt3 ]
Ei(h,N) :Epert(hyN) - \/%N' n eXP —% Pinst(haN) + ...



Resurgence 1n Quantum Mechanical Instanton Models

trans-series for energy, including non-perturbative splitting:

ho1o(32\V2 3
Ei(h,N):Epert(h,N)::\/%N! P exXp _ﬁ Pinst(h,N)—l—...

fluctuations about first non-trivial saddle:

B 6Epert(h7 N) i hdh 8Epert(h, N) | (N 4 %) 12 -
Pinst (B, N) = =57 exp S/() 18 ON -

perturbation theory encodes everything ! ... to all orders !



Resurgent Functions

“resurgent functions display at each of their singular points
a behaviour closely related to their behaviour at the origin.
Loosely speaking, these functions resurrect, or surge up - in
a slightly different guise, as it were - at their singularities”

J. Ecalle, 1980

occurs in QM path integrals with an infinite number of saddles




Resurgence 1n QFT: Euler-Heisenberg Effective Action

Folgerungen aus der Diracschen Theorie des Positrons.
Von W. Heisenberg und H. Euler in Leipzig.
Mit 2 Abbildungen. (Eingegangen am 22. Dezember 1935.)

Aus der Diracschen Theorie des Positrons folgt, da jedes elektrom&gnetische
Feld zur Paarerzeugung neigt, eine Abéinderung der Maxwellschen Gleichungen
des Vakuums. Diese Abinderungen werden fiir den speziellen Fall berechnel,
in dem keine wirklichen Elektronen und Positronen vorhanden sind, und in
dem sich das Feld auf Strecken der Compton-Wellenldnge nur wenig &ndert.
Fs crgibt sich fiir das Feld eine Lagrange-Funktion:

60S ( I VE2— B2 + 240(E EB)) + konj

1 62 - d?} g |@kl _
ﬂ:*(&2~%2)+-—w§6’7——-{*ﬂ (€D)- — R '
2 he 7 cos(m?l Vfﬁgﬂﬂ32+2i((§$))_k°nj
K

2
G2+ T (%ﬂ—tﬁﬂ)}-

m2 ¢d 1 e

&, B Kraft auf das Elektron.
( eh — » 1374 (‘35!/%'1,.*:9)"i

— , Kritische Feldstﬁrke“.)

perturbative expansion gives a doubly-divergent series
integral 1s the Borel sum

analogue of Stark 1onization and Dyson’s argument
particle production 1n E field implies series are divergent




Resurgence 1n QFT: Stokes Phase Transition

+ Schwinger effect with monochromatic E field: E(t) = £ cos(w t)

m cw
- Keldysh adiabaticity parameter: v = o c (Keldysh, 1964:

- 9 3 - Brezin/Itzykson, 1980;

. WKB: FQED ~ exp W?h; g(v) Popov, 1981)

, 7<1 (tunneling)
I'QED ~

( e & )4m02/hw

m cw

., v>1 (multiphoton)

» phase transition: tunneling vs. multi-photon “1onization”
- phase transition: real vs. complex instantons
- non-trivial quantum interference effects for E(t)



Resurgence in QFT: Ultra-Fast Dynamics

time evolution of quantum systems with ultra-fast perturbations

0)in ~\/\ 0)ou

t = —00 intermediate time t =400

adiabatic expansion 1s divergent
resurgence: expansion can be (Borel) resummed to a universal form

novel quantum interference effects: complex saddles
back-reaction effects (e.g., Schwinger effect)




Probing Physics at
Extreme Intensities

10 [ y=1 (Schwinger intensity)
@ €SLACE144 50 GeV

. = (center of momentum frame) " 4
» Current experimental g 105
< EU
proposals: laser-laser; % P
Ll 6
laser-lepton; lepton- i o ) Michigan > @) \@ B irriors
. < - LCLS*

lepton; highly-charged z STat e et ——

. . o ab frame

lOnS; aStI‘OphySICS; g Up = 1 atomic unit (Rochester T3)
- Important theoretical =

puzzles remain € Mode-locking
» Locally constant field 1010 | /€ Q-switching

apprOXimatiOn? 1960 1970 1980 1990 2000 2010 2020 2030
 Semiclassical

C()mpu ta tlons? PHYSICAL REVIEW LETTERS 122, 190404 (2019)

oq o . . (a)

» Non-equilibrium : |_ ‘

physics? i = | P
- Ultra-fast dynamics .y . o

36‘

Reviews: D1 Piazza et al, 2012;
US National Academies, 2018

YV



Resurgence 1n Asymptotically Free Quantum Field Theory

CAN WE MAKE SENSE OUT OF "QUANTUM CHROMODYNAMICS"? 1979

G: 't Hooft

Institute for Theoretical Physics

University of Utrecht, Netherlands

[R divergencies
Instantons
e } -
renormalons -4' | _lé_ 8’ 161’
1 1

“infrared renormalon puzzle”: the BZJ cancelation appears to fail ...



Resurgence 1n Quantum Field Theory

infrared renormalon puzzle of asymptotically free QFT

. , 257 ]
perturbation theory + Borel: — +1 exp [— 2 B,
L . - 25,]
non-perturbative instantons :  — —1 exp 72

instanton / anti-instanton poles

e

/N

UV renormalon poles

IR renormalon poles



Resurgence 1n Quantum Field Theory

infrared renormalon puzzle of asymptotically free QFT

. , 257 ]
perturbation theory + Borel: — +1 exp [— 72 5[

1

L . 2S5
non-perturbative instantons :  — —1 exp 72

instanton / anti-instanton poles

e

*—0—0—0—0 *—0—0 00 0 0 ¢

/ \\

UV renormalon poles IR renormalon poles

neutral bion poles
— —1 exp {—

2.5] }
g° b1
new non-perturbative objects (“neutral bions”) lead to

Bogomolny/Zinn-Justin style resurgent cancelation GD/ Unsal. 2012



Resurgence 1n Quantum Field Theory: recent progress

2d sigma models: CPN-1, principal chiral model, O(N), ...

matrix models: unitary, quartic, cubic, Chern-Simons, ...
“localizable” QFT : matrix models

SUSY QFT and integrable models

topological string theories

numerical gradient flow: Thirring model, Bose gas, non-equil., ...

“large N”: new large N 1nstantons & non-perturbative completions



Analytic Continuation of Path Integrals: “Lefschetz Thimbles”

Z(h) = / DA exp (% S[A]) = S Nuwe®n DA (T) x exp (Re {%S[A]D

thimble
Lefschetz thimble = “functional steepest descents contour”

on a thimble, the path integral becomes
well-defined and computable !

complexified gradient flow:

o 0S5
57 A T) = O0A(x;T)

ot




Analytic Continuation of Path Integrals: “Lefschetz Thimbles™

CRISTOFORETTI et al. (2013)
0.7 . .

AA 8% — s
0.6 LWA 8% « ¢ -

0.5} %
0.4} &

0.3F &

0.2F %
0.1} &

(n)

0): AAKAAAA;%%%

_01 1 1 1 1 1
09 0.95 1 1.05 1.1 LS 1.2 125

U

FIG. 3. Comparison of the average density (n) obtained with
the worm algorithm (WA) [22] with the Aurora algorithm (AA)

- 4d relativistic Bose gas: complex scalar field theory
+ Monte Carlo on thimble softens the sign problem
» results comparable to “worm algorithm”



Generalized Thimble Method
Alexandru, Basar, Bedaque et al 2016

1dea: flow to an approximate Lefschetz thimble

(T 1

e om

AR ALl

exact steepest *

descents contour

0.0006




(Generalized Thimble Method

Alexandru, Basar, Bedaque et al 2016

1dea: flow to an approximate Lefschetz thimble

]
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exact steepest *

descents contour

0.0006

/\
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descents contour

I

it



Generalized Thimble Method

thimble thimble

)

saddl
V

original domain (real fields)




Phase Transitions in QFT: 2d Thirring Model
2

L =" (30 +m+ py0) Y z?vf (V1) (7 01”)

- chain of interacting fermions: asymptotically free
- prototype for dense quark matter

+ sign problem at nonzero density
» 2d cousin of Hubbard model

| —— T/m;=0.38
0.8+

| == T/my=0.19

0.6 —— T/m=0.13

3
Monte Carlo thimble c Wig=tLte

computation

(Alexandru et al, 2016)




Phase Transitions in Gross-Neveu Model

£GI‘OSS—N€V€U. :waiWa | 9 (wawa)

« asymptotically free; dynamical mass; chiral symmetry; model for QCD
 large Nt chiral symmetry breaking phase transition
* physics = (relativistic) Peierls dimerization instability in 1+1 dim.

chiral symmetry
breaking condensate

o(x; T, p) = (W) (; T, o)

develops crystalline

crystal

0 . , ' . , | | phases !

0.2 0.4 2/m 0.8 1 152 14 1.6

# (Thies et al)
saddles solve inhomogeneous gap equation

0
oo (x; T, )

o(x; T, 1) = Indet (i @ — o(x; T, 1))



Phase Transitions in Gross-Neveu Model

 thermodynamic potential

Vos Tl = =T [ dE p(E) In (14 FT) = 3" an (L) ol (e T. o)

0.35

0.30

0.25

0.20

0.15

0.10

0.05

0.00

055 060 065 070 075 080 085 O.

 (divergent) Ginzburg-Landau expansion = mKdV

e exact saddles are known

* successive orders of GL expansion “reveal” crystal phase

Order \°

0.35

0.30

0.25

0.20

0.15

0.10
Qg — 0

0.05

0.00

0

Order )8

0.35

0.30

0.25

0.20

0.15

0.10

0.05

0.00

055 060 065 070 0.75 080 0.85 0.9C

14

Order \'°

\

0410:0

055 060 065 070 075 080 085 0.90

i

» all orders gives full crystal phase ... but T=0 critical point 1s difficult



Phase Transitions in Gross-Neveu Model

 density expansion has non-perturbative terms: “trans-series”

* high-density expansion at T=0: (convergent)

T 5 1 | 3
Ep)~ 5 p <1 32(1p)d | 8192(mp)8 >

* low-density expansion at T=0: (non-perturbative trans-series)

1 20 1 =e F/r
E(p) ~ Dy Fio

* T=0 quantum phase transition

2
Heritical — — A P = 0
-



Resurgence 1in Matrix Models at Large N

3rd order phase transition in Gross-Witten-Wadia unitary matrix model

N
Z()\,N):/ DU exp —tr(U—FUT)
U(N) A

Z depends on two parameters

_ 1 [ 1 i

C/N?
500 | =
4 | =

er =

L. : | L. L
l 2 3 4 A

FIG. 2. The specific heat per degree of freedom, C/
N%, as a function of A (temperature).

“order parameter” A(t, N) = (det U) satisfies a Painleve equation



Resurgence in Matrix Models at Large N

large N weak coupling trans-series:

X AP () i ogear teNSven® X dlD (1)

A(t,N)~+1—t -

N2n 2\/5;;5? (1 __t)1/4 Nn

n=0 n=0

weak coupling large N action:

24/ 1 — ¢
ELNeak(t)::: \/

t
(44 * " . .
one-instanton' fluctuations:

2 arctan (\/1 — t)

i diV (t) LB —12t-8) 1
N7 ©96(1—t)3/2 N

n=0



Resurgence in Matrix Models at Large N

large N weak coupling trans-series:

X AP () i ogear teNSven® X dlD (1)

A(t,N)~+1—t -

N2n 2\/5;;57 (1 __t)1/4 Nn

n=0 n=0

weak coupling large N action:

24/ 1 — ¢
ELNeak(t)::: \/

t
(44 * " . .
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resurgence: large-order growth of “perturbative coetficients™:
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Resurgence and Large N Phase Transitions in Matrix Models

Lee-Yang: complex zeros of Z pinch the real axis at the phase
transition, 1n the thermodynamic (large N) limit
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complex parameters can indicate phase transitions




Resurgent Extrapolation

» sometimes asymptotics 1s the ONLY thing we can do

* question: how much global information can be decoded from a
FINITE number of perturbative coefficients ?

* how much information is required to see and to probe a phase
transition ?
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Resurgent Extrapolation

e case-study: Painleve I equation v (z) = 6y°(x) —

Im[x]
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Re[x]

Anti—Stokes
Stokes

* Painleve I equation has 5 sectors in the complex x
plane, separated by phase transitions

* suppose we expand about x=+infty to finite order N: how
much do these coefficients “know’’ about the other sectors?



Resurgent Extrapolation

* 10 terms at +infty encode 23 digits precision at x=0
* best numerical integration routjnes give 14-15 digits precision at x=0
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* we can also explore the complex plane: with just N=10
terms, we can “see’ the first 3 poles; with N=50 terms,
we see the first 15 poles

e resurgent extrapolation can decode global behavior from
surprisingly little input data from some other regime



Resurgent Extrapolation

e resurgent extrapolation can decode global behavior from
surprisingly little input data from some other regime

e transmutation of the trans-series:
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* in the pole region ? < arg(x) < %
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* this phase transition 1s encoded in fluctuations at x=+infty



Conclusions

* “resurgence’” 1s a new and improved form of asymptotics
* deep connections between perturbative and non-perturbative physics
* recent applications to differential eqs, QM, QFT, string theory, ...

 outlook: new theoretical approach to quantum systems 1n extreme
conditions

 outlook: computational definition of real-time path integrals

 outlook: computational access to strongly-coupled systems, phase
transitions, particle production, and far-from-equilibrium physics

 outlook: new insights to hydrodynamics



