## DYNAMICAL BOTTOMONIUM-SUPPRESSION (AND RECOMBINATION) IN NUCLEUS-NUCLEUS COLLISIONS



# Pol B Gossiaux, with Roland Katz SUBATECH (NANTES)

Quantum Systems in Extreme Conditions Heidelberg (Germany) 22/09/2019 - 27/09/2019



# The Quark Gluon Plasma (QGP)



The SL equation

Suppression & Recombination

# **QGP** in heavy ion collisions



# Extremely **small** (~10<sup>-15</sup> m), **short-lived** (~10<sup>-21</sup> s), dynamic (relativistic), and hot (10<sup>12</sup> °C) bubbles of QGP medium...

Great challenge to study !

## **Experimental QGP**

#### How ? => By colliding heavy ions at very high energies !





## « Hard » probes

To study the medium properties before the freeze out «horizon»...

Deconfined ? Density and T ? Transport properties ? ...

... one can analysed the « tomography » of the medium realised by the hard probes ( I incomplete thermalisation)

High p<sub>T</sub> partons quenching



Massive quarks diffusion

#### Why hard probes ?

Produced only in early pQCD processes before the GQP medium
 Do not flow hydrodynamically but propagate/interact inside the medium via other processes sensitive to its properties

✓ Less sensitive to hadronic stages



#### Various (more or less) tightly bound energy states

#### **CHARMONIA**

- **J/ψ**: m = 3.096 GeV/c
- $\chi_{
  m c_J}:$  m ≈ 3.5 GeV/c
- **ψ'**: m = 3.686 GeV/c

BOTTOMONIA  $\Upsilon(1S)$ : m = 9.460 GeV/c

 $\chi_{\mathbf{b_J}}:$  m ≈ 9.9 GeV/c

 $\Upsilon(2S)$  : m = 10.023 GeV/c

 $\Upsilon(3S)$  : m = 10.355 GeV/c

# **Quarkonia suppression**

#### **Expected medium effects : the « Quarkonia suppression »**

Smaller amount of quarkonia produced in heavy ion collisions per binary nucleon collision as compared to pp collisions.

Quantified with the *nuclear modfication factor:* 

$$R_{\rm AA}(p_{\rm T},\eta) = \frac{dN^{\rm AA}/d^2 p_{\rm T} d\eta}{\langle N_{\rm coll} \rangle \, dN^{\rm pp}/d^2 p_{\rm T} d\eta}$$

#### **Different contributions**

In QGP:

In hadronic phases:



« Normal » suppression (~ small)
From Cold Nuclear Matter effects

from color screening and collisions with the medium partons + possibility of recombination

### **Historical models**

#### Sequential suppression (Matsui and Satz)



### Looking at recent data

#### Hints for sequential-like supression of states



# Background and Motivation The SL equation Suppression & Recombination Not all equal !!!

### Recombination: hierarchy of approaches...

Statistical weights (at transition). no detailed dynamics.  $\textcircledinterim}$  assumes all time scales are small vs. transition time.  $\textcircledinterime$  simple to deal with. PBM, Stachel & Andronic; Gorenstein, Kostyuk;...

Rate equations:

 $\frac{dN_{\Psi}}{dt} = -\Gamma_{\Psi} \left( N_{\Psi} - N_{\Psi}^{eq} \right)$ 



Transport theory assuming spatial homogeneous  $f_i(p)$ .  $\odot$  diff spectra.  $\otimes$  misses surface effects, x-p correl, Q are not uniformly distributed. Thews and Mangano

Transport theory. ☺ solves the caviats of other approaches. ☺ may obscure the physics. Zhang (AMPT); Bratkovskaya (HSD); Gossiaux;...

... does not mean a hierarchy of answers (hopefully)!

Complexity



**Common belief in QGP community:** 

Quarkonia initially « formed » in QGP at time t=0 are then destroyed and survive with a survival probability  $C(t) = -\int_{-\infty}^{t} \Gamma(T(t')) dt'$ 

$$S(t) = e^{-\int_0^t \Gamma(T(t'))dt'}$$

### New motto: QQ real-time dynamics

#### **Consider:**

color sreening, (non-)dissociative interactions and QGP dynamics

INNER DYNAMICS OF EACH  $Q\overline{Q}$  PAIR

A dynamical and continuous picture of the dissociation, recombination, transitions between states, and energy exchanges with the QGP

#### +

#### **QQ PAIRS EVOLUTION IN A VERY DYNAMIC QGP**

Realistic t-dependent background: Monte-Carlo event generator with initial fluctuations

=> Quarkonia as QGP continuous thermometers

# QQ dynamics ? -> back to concepts



#### Treatment within the open quantum system framework !

# **Open quantum systems (OQS)**

In usual quantum mechanics: no irreversible/dissipative phenomena...

#### The quantum master equation (QME) approach

Idea: density matrix of conservative {bath + subsystem of interest}
 => bath degrees of freedom integrated out

=> dissipative *quantum master equation* for the subsystem

But : defining the bath & interaction is often complex, the calculation and application entangled

#### Stochastic equations

- Idea: Effective equations to unravel/mock the open quantum approach while keeping most of the quantum features
  - But : possibly not related to a master equation or QCD

Widely applied in quantum diffusion and transport, quantum optics, low energy heavy ion scattering, quantum computers and devices...

### **Stochastic equations and quarkonia**

*Effective equations* to unravel/mock the open quantum system approach while keeping most of the quantum features

#### Langevin-like approaches

**Idea:** Brownian heavy quarks (M<sub>Q</sub> >> T) + Drag A(T) from QCD models

Young and Shuryak (2009) & R.K. and Gossiaux (2014) Wigner description of the QQ wavefunction + classical Langevin But: important pitfalls (Heisenberg principle violation...)

Roland Katz and Pol-B. Gossiaux (From 2015 on) Schrödinger-Langevin equation: Schrödinger equation with fluctuation-dissipation terms => 1D analysis: most of quantum features satisfied and equilibrium ok. Interesting suppression patterns.

**But**: A priori only related to a quantum master equation in phenomenological sense (see talk by A. Rothkopf for "first principle" approach)

### Inner dynamics: Schrödinger-Langevin (SL) equation

Suppression & Recombination

Derived from the Heisenberg-Langevin equation\*, in Bohmian mechanics\*\* ...

$$i\hbar \frac{\partial \Psi_{Q\bar{Q}}(\mathbf{r},t)}{\partial t} = \left( \widehat{H}_{\mathrm{MF}}(\mathbf{r}) - \mathbf{F}_{\mathbf{R}}(t) \cdot \mathbf{r} + A \left( S(\mathbf{r},t) - \langle S(\mathbf{r},t) \rangle_{\mathbf{r}} \right) \right) \Psi_{Q\bar{Q}}(\mathbf{r},t)$$

Hamiltonian: Mean Field: T-dependent color screened potential Generally taken from lattice-QCD

Static IQCD calculations (maximum heat exchange with the medium):



- "Weak potential" F<Vweak<U => some heat exchange
- "Strong potential" V=U => adiabatic evolution

\* Kostin The J. of Chem. Phys. 57(9):3589–3590, (1972) \*\* Garashchuk et al. J. of Chem. Phys. 138, 054107 (2013) Mócsy & Petreczky Phys.Rev.D77:014501,2008 ; Kaczmarek & Zantow arXiv:hep-lat/0512031v1

### Inner dynamics: Schrödinger-Langevin (SL) equation

**Suppression & Recombination** 

Derived from the Heisenberg-Langevin equation, in Bohmian mechanics ...

$$i\hbar \frac{\partial \Psi_{Q\bar{Q}}(\mathbf{r},t)}{\partial t} = \left( \widehat{H}_{\mathrm{MF}}(\mathbf{r}) - \mathbf{F}_{\mathbf{R}}(t) \cdot \mathbf{r} + A \left( S(\mathbf{r},t) - \langle S(\mathbf{r},t) \rangle_{\mathbf{r}} \right) \right) \Psi_{Q\bar{Q}}(\mathbf{r},t)$$

Hamiltonian: Mean Field: T-dependent color screened potential Generally taken from lattice-QCD. Only singlet for now.

3D not easy to implement => 1D simplified model

not aim to reproduce the data but rather gives insights on the dynamics.



Suppression & Recombination

# **Inner dynamics: SL equation**

Derived from the Heisenberg-Langevin equation, in Bohmian mechanics ...

$$i\hbar \frac{\partial \Psi_{Q\bar{Q}}(\mathbf{r},t)}{\partial t} = \left(\widehat{H}_{\mathrm{MF}}(\mathbf{r}) \left(-\mathbf{F}_{\mathbf{R}}(t) \cdot \mathbf{r} + A\left(S(\mathbf{r},t) - \langle S(\mathbf{r},t) \rangle_{\mathbf{r}}\right)\right) \Psi_{Q\bar{Q}}(\mathbf{r},t)$$

**Fluctuations: thermal excitation** Taken as a « classical » white stochastic force/noise scaled such as to obtain  $T_{Q\overline{Q}} = T_{QGP}$  at equilibrium

The noise operator is assumed here to be a commutating c-number whereas it is a non-commutating q-number within the Heisenberg-Langevin framework.

I. R. Senitzky, Phys. Rev. 119, 670 (1960); 124}, 642 (1961).
G. W. Ford, M. Kac, and P. Mazur, J. Math. Phys. 6, 504 (1965).
R. Katz and P.B. Gossiaux, Annals Phys. 368 (2016) 267-295

# **Schrödinger-Langevin (SL) equation**

Derived from the Heisenberg-Langevin equation, in Bohmian mechanics ...





\*\* G. W. Ford, M. Kac, and P. Mazur, J. Math. Phys. 6, 504 (1965).

Suppression & Recombination

# **Inner dynamics: SL equation**

Derived from the Heisenberg-Langevin equation, in Bohmian mechanics ...

$$i\hbar \frac{\partial \Psi_{Q\bar{Q}}(\mathbf{r},t)}{\partial t} = \left(\widehat{H}_{\mathrm{MF}}(\mathbf{r}) - \mathbf{F}_{\mathbf{R}}(t) \cdot \mathbf{r} + A\left(S(\mathbf{r},t) - \langle S(\mathbf{r},t) \rangle_{\mathbf{r}}\right)\right) \Psi_{Q\bar{Q}}(\mathbf{r},t)$$

#### **Dissipation: thermal de-excitation**

$$S(\mathbf{r},t) = \arg\left(\Psi_{Q\bar{Q}}(\mathbf{r},t)\right)$$

✓ non-linearly dependent on Ψ<sub>QQ̄</sub>
 ✓ real and ohmic
 ✓ brings the system to the lowest state
 ✓ with A(T) α T^2 the Drag coefficient from a microscopic model (pQCD - HTL) by Gossiaux and Aichelin

P.B. Gossiaux and J. Aichelin, Phys.Rev. C78 (2008) 014904 R. Katz and P.B. Gossiaux, Annals Phys. 368 (2016) 267-295

# **Properties of the SL equation**

> 2 parameters: A (Drag) and T (temperature)

Unitarity and Heisenberg principle satisfied at any T

> Non linear => Violation of the superposition principle (=> decoherence)

> A priori not univoquely related to a quantum master equation: effective treatment

Mixed state observables from statistics:

$$\left\langle \langle \psi(t) | \hat{O} | \psi(t) \rangle \right\rangle_{\text{stat}} = \lim_{n_{\text{stat}} \to \infty} \frac{1}{n_{\text{stat}}} \sum_{r=1}^{n_{\text{stat}}} \langle \psi^{(r)}(t) | \hat{O} | \psi^{(r)}(t) \rangle$$

> Easy to implement numerically (especially in Monte-Carlo generator)

### **Observables**

« weight » (population) W<sub>i</sub> :

$$W_i(t) = \left| \left\langle \Psi_i(T=0) | \Psi_{Q\bar{Q}(t)} \right\rangle \right|^2$$

# **Properties of the SL equation**

Leads to local « thermal » distributions: Boltzmann behaviour for at least the low lying states



(weak coupling limit: no shift and broadening of the energy levels assumed)

#### => Fluctuation-dissipation mechanism compatible with quantum mechanics and effective !!

# **Dynamics of QQ with SL equation** Evolutions at constant T: understanding the model

Simplified Potential but contains the essential physics



> Observables: Weight  $W_i(t) = \left\langle \left| \langle \psi_i(T=0) | \psi_{Q\bar{Q}}(t) \rangle \right|^2 \right\rangle_{\text{stat}}$ 

### Initial QQ wavefunction

> Produced at the very beginning :  $\tau_f^{Q\bar{Q}} \sim \hbar/(2m_Q c^2) < 0.1 \text{ fm/c}$ 





### **Observables**

« weight » (population) W<sub>i</sub> :

$$W_i(t) = \left| \left\langle \Psi_i(T=0) | \Psi_{Q\bar{Q}(t)} \right\rangle \right|^2$$

Normed weights S<sub>i</sub>:  $S_i(t) = W_i(t)/W_i(t=0)$ 

The only « physical » values are at the end of QGP evolution.

 $S_i(t)$  at the end of the evolution convoluted with  $p_T$ -y spectra in pp collisions =>  $R_{AA}$ 

# Background and Motivation The SL equation Suppression & Recombination Suppression & Recombination + Fstocha



29

# Initial QQ pair wavefunction ?

The QQ pairs are produced at the very beginning BUT state formation times are subject to debate => we test the two extrem behaviours:

#### or

➤ the QQ pair is not decoupled:
ψ<sub>QQ</sub>(t=0)="a mixture of Gaussian S and P components"
tuned to obtain correct feed-downs and production ratios.

e.g.: contribution to Y(1S) from feed downs:



# Background and Motivation The SL-equation Suppression & Recombination Evolution of the QQ pairs on EPOS initial

# conditions + hydro background (EPOS2) > Very good model for heavy ion collisions with initial fluctuations and ideal 3D

- Very good model for heavy ion collisions with initial fluctuations and ideal 3D hydrodynamics
- > QQ pairs initial positions: given by Glauber model
- > No Cold Nuclear Matter effects (no shadowing and no hadronic scatterings)
- QQ pair center-of-masse motion: along straight lines with no E<sub>loss</sub> (assumed to be color singlet)
- > Focus on bottomonia for now (CNM and statistical recombination small)



K. Werner, I. Karpenko, T. Pierog, M. Bleicher and K. Mikhailov, Phys. Rev. C 82 (2010) 044904. K. Werner, I. Karpenko, M. Bleicher, T. Pierog and S. Porteboeuf-Houssais, Phys. Rev. C 85 (2012) 064907

### **Example of evolution**



Observations

Smooth evolutions (especially for higher excited states) No strong  $p_T$  dependence Important transitions between bound states Not everything is about thermal decay widths





### **Influence of initial state**



1P component feeds the Y(1S) at small times Y(2S) found at the end of QGP evolution are mostly the ones regenerated from the 1S & 1P



### **Historical models**

#### Statistical hadronisation

(Braun-Munzinger, Stachel, Andronic, Thews...)

<u>Assume</u> that screening + multiple interactions

=>

All QQ pairs are dissociated + Statistical recombination at hadronisation

=> Quarkonia as thermometer of T<sub>c</sub>

#### <u>BUT:</u>

Everything happens at the END in a quasi-stationnary medium
 Not obvious that no tightly bound states survive

### Looking at recent data

Strong Hints for some charm recombination as:

- Less suppression passing from RHIC -> LHC collider (larger T)
- $J/\psi$  benefit from medium (elliptical) flow



#### ...but not for bottom so far



#### Suppression & Recombination

### **Dealing with « recombination »**

#### Several approaches associated with pretty drastic



c) Thermalisation of Q and Qbar in local phase space, then guarkonia production according to statistical weights

### **Results with SLE in a stationnary medium**



 ✓ some bound state creation through stochastic forces
 ✓ most substantial effects from dissipation

 ✓ relative weights after population compatible Boltzmann probability exp(-E<sub>n</sub>/T)
 ✓ ... but needs a long time.



### Results with SLE in evolving medium



 ✓ Substantial recombination probability at the end of the evolution provided one includes dissipation

✓ Yet, no instantaneous thermalisation.

 ✓ Recombination probability tend to decrease for larger p<sub>rel</sub>



### **Results with SLE in evolving medium**



 ✓ Similar pattern seen for c+cbar -> charmonia family



# Conclusion

These past years:

Long and tricky road to apply the Open Quantum System framework to improve the description of quarkonia physics in the QGP, with steady progress

> <u>Today:</u> Novelty: quantum recombination

> > Close future:

Good hope to rely on « event generators » based on OQS, while still a lot of unknowns (Q-QGP interaction, radiation in QGP,...)

Thank you !

