Particle production from expanding $Q C D$ strings and its quantum simulation

Stefan Floerchinger (Heidelberg U.)

Quantum Systems in Extreme Conditions
Heidelberg University, 25.09.2019

- elementary particle collision experiments such as $e^{+} e^{-}$collisions show some thermal-like features
- particle multiplicities well described by thermal model

[Becattini, Casterina, Milov \& Satz, EPJC 66, 377 (2010)]
- conventional thermalization by collisions unlikely
- more thermal-like features difficult to understand in Pythia
[Fischer, Sjöstrand (2017)]
- alternative explanations needed

- particle production from QCD strings
- Lund string model (e. g. Pythia)
- different regions in a string are entangled
- subinterval A is described by reduced density matrix

$$
\rho_{A}=\operatorname{Tr}_{B} \rho
$$

- reduced density matrix is of mixed state form
- could this lead to thermal-like effects?

Entropy and entanglement

- consider a split of a quantum system into two $A+B$

- reduced density operator for system A

$$
\rho_{A}=\operatorname{Tr}_{B}\{\rho\}
$$

- entropy associated with subsystem A: entanglement entropy

$$
S_{A}=-\operatorname{Tr}_{A}\left\{\rho_{A} \ln \rho_{A}\right\}
$$

- globally pure state $S=0$ can be locally mixed $S_{A}>0$
- coherent information $I_{B\rangle A}=S_{A}-S$ can be positive

Microscopic model

- QCD in $1+1$ dimensions described by ' t Hooft model

$$
\mathscr{L}=-\bar{\psi}_{i} \gamma^{\mu}\left(\partial_{\mu}-i g \mathbf{A}_{\mu}\right) \psi_{i}-m_{i} \bar{\psi}_{i} \psi_{i}-\frac{1}{2} \operatorname{tr} \mathbf{F}_{\mu \nu} \mathbf{F}^{\mu \nu}
$$

- fermionic fields ψ_{i} with sums over flavor species $i=1, \ldots, N_{f}$
- $\operatorname{SU}\left(N_{c}\right)$ gauge fields \mathbf{A}_{μ} with field strength tensor $\mathbf{F}_{\mu \nu}$
- gluons are not dynamical in two dimensions
- gauge coupling g has dimension of mass
- non-trivial, interacting theory, cannot be solved exactly
- spectrum of excitations known for $N_{c} \rightarrow \infty$ with $g^{2} N_{c}$ fixed ['t Hooft (1974)]

Schwinger model

- QED in $1+1$ dimension

$$
\mathscr{L}=-\bar{\psi}_{i} \gamma^{\mu}\left(\partial_{\mu}-i q A_{\mu}\right) \psi_{i}-m_{i} \bar{\psi}_{i} \psi_{i}-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}
$$

- geometric confinement
- $\mathrm{U}(1)$ charge related to string tension $q=\sqrt{2 \sigma}$
- for single fermion one can bosonize theory exactly
[Coleman, Jackiw, Susskind (1975)]

$$
\begin{aligned}
S=\int d^{2} x \sqrt{g}\{ & -\frac{1}{2} g^{\mu \nu} \partial_{\mu} \phi \partial_{\nu} \phi-\frac{1}{2} M^{2} \phi^{2} \\
& \left.-\frac{m q e^{\gamma}}{2 \pi^{3 / 2}} \cos (2 \sqrt{\pi} \phi+\theta)\right\}
\end{aligned}
$$

- Schwinger bosons are dipoles $\phi \sim \bar{\psi} \psi$
- scalar mass related to $\mathrm{U}(1)$ charge by $M=q / \sqrt{\pi}=\sqrt{2 \sigma / \pi}$
- massless Schwinger model $m=0$ leads to free bosonic theory
- so far dynamics strictly confined to $1+1$ dimensions
- transverse coordinates may fluctuate, can be described by Nambu-Goto action $\left(h_{\mu \nu}=\partial_{\mu} X^{m} \partial_{\nu} X_{m}\right)$

$$
\begin{aligned}
S_{\mathrm{NG}} & =\int d^{2} x \sqrt{-\operatorname{det} h_{\mu \nu}}\{-\sigma+\ldots\} \\
& \approx \int d^{2} x \sqrt{g}\left\{-\sigma-\frac{\sigma}{2} g^{\mu \nu} \partial_{\mu} X^{i} \partial_{\nu} X^{i}+\ldots\right\}
\end{aligned}
$$

- two additional, massless, bosonic degrees of freedom corresponding to transverse coordinates X^{i} with $i=1,2$

Expanding string solution 1

- external quark-anti-quark pair on trajectories $z= \pm t$
- coordinates: Bjorken time $\tau=\sqrt{t^{2}-z^{2}}$, rapidity $\eta=\operatorname{arctanh}(z / t)$
- metric $d s^{2}=-d \tau^{2}+\tau^{2} d \eta^{2}$
- symmetry with respect to longitudinal boosts $\eta \rightarrow \eta+\Delta \eta$

Expanding string solution 2

- Schwinger boson field depends only on τ

$$
\bar{\phi}=\bar{\phi}(\tau)
$$

- equation of motion

$$
\partial_{\tau}^{2} \bar{\phi}+\frac{1}{\tau} \partial_{\tau} \bar{\phi}+M^{2} \bar{\phi}=0
$$

- Gauss law: electric field $E=q \phi / \sqrt{\pi}$ must approach the $\mathrm{U}(1)$ charge of the external quarks $E \rightarrow q_{\mathrm{e}}$ for $\tau \rightarrow 0_{+}$

$$
\bar{\phi}(\tau) \rightarrow \frac{\sqrt{\pi} q_{\mathrm{e}}}{q} \quad\left(\tau \rightarrow 0_{+}\right)
$$

- solution of equation of motion [Loshaj, Kharzeev (2011)]

$$
\bar{\phi}(\tau)=\frac{\sqrt{\pi} q_{\mathrm{e}}}{q} J_{0}(M \tau)
$$

- theories with quadratic action often have Gaussian density matrix
- fully characterized by field expectation values

$$
\bar{\phi}(x)=\langle\phi(x)\rangle, \quad \bar{\pi}(x)=\langle\pi(x)\rangle
$$

and connected two-point correlation functions, e. g.

$$
\langle\phi(x) \phi(y)\rangle_{c}=\langle\phi(x) \phi(y)\rangle-\bar{\phi}(x) \bar{\phi}(y)
$$

- if ρ is Gaussian, also reduced density matrix ρ_{A} is Gaussian

Entanglement entropy for Gaussian state

- entanglement entropy of Gaussian state in region A [Berges, Floerchinger, Venugopalan, JHEP 1804 (2018) 145]

$$
S_{A}=\frac{1}{2} \operatorname{Tr}_{A}\left\{D \ln \left(D^{2}\right)\right\}
$$

- operator trace over region A only
- matrix of correlation functions

$$
D(x, y)=\left(\begin{array}{ll}
-i\langle\phi(x) \pi(y)\rangle_{c} & i\langle\phi(x) \phi(y)\rangle_{c} \\
-i\langle\pi(x) \pi(y)\rangle_{c} & i\langle\pi(x) \phi(y)\rangle_{c}
\end{array}\right)
$$

- involves connected correlation functions of field $\phi(x)$ and canonically conjugate momentum field $\pi(x)$
- expectation value $\bar{\phi}$ does not appear explicitly
- coherent states and vacuum have equal entanglement entropy S_{A}

- consider rapidity interval ($-\Delta \eta / 2, \Delta \eta / 2$) at fixed Bjorken time τ
- entanglement entropy does not change by unitary time evolution with endpoints kept fixed
- can be evaluated equivalently in interval $\Delta z=2 \tau \sinh (\Delta \eta / 2)$ at fixed time $t=\tau \cosh (\Delta \eta / 2)$
- need to solve eigenvalue problem with correct boundary conditions

Bosonized massless Schwinger model

- entanglement entropy understood numerically for free massive scalars [Casini, Huerta (2009)]
- entanglement entropy density $d S / d \Delta \eta$ for bosonized massless Schwinger model $\left(M=\frac{q}{\sqrt{\pi}}\right)$

Conformal limit

- For $M \tau \rightarrow 0$ one has conformal field theory limit [Holzhey, Larsen, Wilczek (1994)]

$$
S(\Delta z)=\frac{c}{3} \ln (\Delta z / \epsilon)+\text { constant }
$$

with small length ϵ acting as UV cutoff.

- Here this implies

$$
S(\tau, \Delta \eta)=\frac{c}{3} \ln (2 \tau \sinh (\Delta \eta / 2) / \epsilon)+\text { constant }
$$

- Conformal charge $c=1$ for free massless scalars or Dirac fermions.
- Additive constant not universal but entropy density is

$$
\begin{aligned}
\frac{\partial}{\partial \Delta \eta} S(\tau, \Delta \eta) & =\frac{c}{6} \operatorname{coth}(\Delta \eta / 2) \\
& \rightarrow \frac{c}{6} \quad(\Delta \eta \gg 1)
\end{aligned}
$$

- Entropy becomes extensive in $\Delta \eta$!

Universal entanglement entropy density

- for very early times "Hubble" expansion rate dominates over masses and interactions

$$
H=\frac{1}{\tau} \gg M=\frac{q}{\sqrt{\pi}}, m
$$

- theory dominated by free, massless fermions
- universal entanglement entropy density

$$
\frac{d S}{d \Delta \eta}=\frac{c}{6}
$$

with conformal charge c

- for QCD in $1+1 \mathrm{D}$ (gluons not dynamical, no transverse excitations)

$$
c=N_{c} \times N_{f}
$$

- from fluctuating transverse coordinates (Nambu-Goto action)

$$
c=N_{c} \times N_{f}+2 \approx 9+2=11
$$

- for conformal fields, entanglement entropy has also been calculated at non-zero temperature.
- for static interval of length L [Korepin (2004); Calabrese, Cardy (2004)]

$$
S(T, l)=\frac{c}{3} \ln \left(\frac{1}{\pi T \epsilon} \sinh (\pi L T)\right)+\text { const }
$$

- compare this to our result in expanding geometry

$$
S(\tau, \Delta \eta)=\frac{c}{3} \ln \left(\frac{2 \tau}{\epsilon} \sinh (\Delta \eta / 2)\right)+\text { const }
$$

- expressions agree for $L=\tau \Delta \eta$ (with metric $d s^{2}=-d \tau^{2}+\tau^{2} d \eta^{2}$) and time-dependent temperature

$$
T=\frac{1}{2 \pi \tau}
$$

Modular or entanglement Hamiltonian 1

- conformal field theory
- hypersurface Σ with boundary on the intersection of two light cones
- reduced density matrix [Casini, Huerta, Myers (2011), Arias, Blanco, Casini, Huerta (2017), see also Candelas, Dowker (1979)]

$$
\rho_{A}=\frac{1}{Z_{A}} e^{-K}, \quad Z_{A}=\operatorname{Tr} e^{-K}
$$

- modular or entanglement Hamiltonian K
- modular or entanglement Hamiltonian is local expression

$$
K=\int_{\Sigma} d \Sigma_{\mu} \xi_{\nu}(x) T^{\mu \nu}(x)
$$

- energy-momentum tensor $T^{\mu \nu}(x)$ of excitations
- vector field

$$
\begin{aligned}
\xi^{\mu}(x)=\frac{2 \pi}{(q-p)^{2}} & {\left[(q-x)^{\mu}(x-p)(q-p)\right.} \\
& \left.+(x-p)^{\mu}(q-x)(q-p)-(q-p)^{\mu}(x-p)(q-x)\right]
\end{aligned}
$$

end point of future light cone q, starting point of past light cone p

- inverse temperature and fluid velocity

$$
\xi^{\mu}(x)=\beta^{\mu}(x)=\frac{u^{\mu}(x)}{T(x)}
$$

Modular or entanglement Hamiltonian 3

- for $\Delta \eta \rightarrow \infty$: fluid velocity in τ-direction, τ-dependent temperature

$$
T(\tau)=\frac{\hbar}{2 \pi \tau}
$$

- Entanglement between different rapidity intervals alone leads to local thermal density matrix at very early times !
- Hawking-Unruh temperature in Rindler wedge $T(x)=\hbar c /(2 \pi x)$
- coherent state vacuum at early time contains entangled pairs of quasi-particles with opposite wave numbers
- on finite rapidity interval $(-\Delta \eta / 2, \Delta \eta / 2)$ in- and out-flux of quasi-particles with thermal distribution via boundaries
- technically limits $\Delta \eta \rightarrow \infty$ and $M \tau \rightarrow 0$ do not commute
- $\Delta \eta \rightarrow \infty$ for any finite $M \tau$ gives pure state
- $M \tau \rightarrow 0$ for any finite $\Delta \eta$ gives thermal state with $T=1 /(2 \pi \tau)$

Bosonized massive Schwinger model
[ongoing work with Lara Kuhn, Jürgen Berges]

- scalar theory with potential

$$
V(\Phi)=\frac{1}{2} M^{2} \Phi^{2}+J \cos (2 \sqrt{\pi} \phi+\theta)
$$

- dimensionless coupling strength $g=2 \sqrt{\pi} J / M^{2}$
- initial value

$$
\Phi(0)=\Phi_{\mathrm{vac}}+\sqrt{\pi}
$$

Time evolution of background field

- solve equation of motion for background field in expanding geometry
- non-linear oscillations damped by expansion

Excitations

- consider now perturbations around expanding background fields
- linear problem: quantization in time dependent situation
- (quasi-) particle production
- similar: cosmology, strong electric fields
- calculate this for different parameters as function of wave number

Asymptotic particle spectrum

- particles per unit rapidity
- characteristic peaks due to resonance-like phenomena
- for large coupling $g=2 \sqrt{\pi} J / M^{2}$ exponential decay

Quantum simulation

[ongoing work with Lara Kuhn]

- two one-dimensional Bose-Einstein condensates with tunnel coupling allow to realize model Lagrangian for relative phase $\phi=\varphi_{1}-\varphi_{2}$

$$
\mathscr{L}=\frac{1}{2} \dot{\phi}^{2}-\frac{c_{s}^{2}}{2}(\nabla \phi)^{2}-V_{0}\left[-\cos (\phi)+\frac{1}{2} \lambda^{2} \sin ^{2}(\phi)\right]
$$

with velocity of sound c_{s}

- λ from periodic in time modulation of tunnel coupling [Fialko, Opanchuk, Sidorov, Drummond \& Brand (2014)] (challenging to implement)

Tunneling and the bounce

[ongoing work with Lara Kuhn]

- consider field in metastable vacuum
- tunneling can be described by semi-classical methods
- false vacuum decay by bounce solution [S. Coleman (1977)]
- could be induced artificially
- interior of forward sound cone resembles closely expanding string solution

Conclusions

- rapidity intervals in an expanding string are entangled
- at very early times theory effectively conformal

$$
\frac{1}{\tau} \gg m, q
$$

- entanglement entropy extensive in rapidity $\frac{d S}{d \Delta \eta}=\frac{c}{6}$
- determined by conformal charge $c=N_{c} \times N_{f}+2$
- reduced density matrix for conformal field theory is of locally thermal form with temperature

$$
T=\frac{\hbar}{2 \pi \tau}
$$

- expanding QCD string dynamics could be quantum simulated through two frequency sine-Gordon model

$$
V(\phi) \sim\left[-\cos (\phi)+\frac{1}{2} \lambda^{2} \sin ^{2}(\phi)\right]
$$

