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The thermal model puzzle

elementary particle collision experiments such as e+ e− collisions show
some thermal-like features

particle multiplicities well described by thermal model500 Eur. Phys. J. C (2008) 56: 493–510

Fig. 4 Comparison between measured and fit multiplicities of long-lived hadronic species in e+e− collisions at
√

s = 91.25 GeV. Left: statistical
hadronization model with one temperature. Right: Hawking–Unruh radiation model

Next, we perform the corresponding hadron-resonance
gas analysis in the Hawking–Unruh formulation, introduc-
ing different temperatures determined by the string tension
σ and the strange quark mass ms . The results for long-lived
species are shown in Table 4 and Fig. 4. The resulting fit
parameters here are

σ = 0.1683 ± 0.0048 GeV2;
ms = 0.083 ± 0.004 GeV,

V = 40.3 ± 3.2 fm3;
(27)

with a χ2/dof = 22/12, somewhat better than that of the
corresponding conventional fit.

We now repeat both analyses using the entire 91.25 GeV
data set, with the results shown in table XX and XXI of the
appendix. The resulting fit values (see Tables 3 and 4) agree
well within errors with those obtained from the “golden”
data set at 91.25 GeV. As expected, because of the men-
tioned error sizes, the χ2/dof for the full 91.25 set is con-
siderably worse.

Here a comment is in order. The simple formulae (5) and
(7), in both models, rely on some side assumptions (e.g. the
special distributions for cluster charge fluctuations needed
for the introduction of the equivalent global cluster) that are
not expected to be exactly fulfilled. Therefore, those for-
mulae are to be taken as a zero-order approximation and
not as a faithful representation of the real process. Devia-
tions from the introduced assumption entail corrections to
the formulae (5) and (7) which are nevertheless very diffi-
cult to estimate. The theoretical error involved in these for-
mulae becomes important when the accuracy of measure-

Table 5 Best fit parameters for the statistical hadronization model in
e+e− collisions. The golden sample fit is marked with a ∗
√

s T [MeV] V T 3 γS χ2/dof

14 172.1 ± 5.2 8.3 ± 1.0 0.772 ± 0.094 0.9/3

22 178.7 ± 3.7 8.70 ± 0.94 0.76 ± 0.10 0.7/3

29 164.0 ± 5.4 15.0 ± 2.4 0.683 ± 0.075 33/13

35 163.3 ± 3.2 15.0 ± 1.4 0.730 ± 0.045 8.2/7

43 169 ± 10 13.5 ± 3.2 0.741 ± 0.074 2.9/3

91 161.9 ± 4.1 25.8 ± 3.4 0.638 ± 0.039 215/27

91* 164.6 ± 3.0 23.3 ± 2.2 0.648 ± 0.026 39/12

133 167.1 ± 7.5 26.0 ± 4.6 0.671 ± 0.074 0.1/2

161 153.4 ± 6.5 37.2 ± 5.9 0.72 ± 0.12 0.03/1

183 161 ± 13 35 ± 11 0.446 ± 0.098 5.0/2

189 159 ± 12 36 ± 10 0.54 ± 0.11 7.5/2

ments is comparable and, in this case, a bad χ2 is to be
expected. This is probably the case at

√
s = 91.25 GeV,

where the relative accuracy of measurements is of the or-
der of few percent for many particles. In this case, the χ2

fit is a useful tool to determine the best parameters of the
“simplified” theory but should be used very carefully as a
measure of the fit quality. As has been mentioned, in order
to take into account the uncertainty on parameters implied in
fits with χ2/dof > 1, parameter errors have been rescaled by√

χ2/dof if this is larger than 1, according to Particle Data
Group procedure [40].

For all the remaining energies we have also carried out
the corresponding analyses; the results are listed in Tables 5
and 6 for the model parameters, while the comparison be-

[Becattini, Casterina, Milov & Satz, EPJC 66, 377 (2010)]

conventional thermalization by collisions unlikely

more thermal-like features difficult to understand in Pythia
[Fischer, Sjöstrand (2017)]

alternative explanations needed
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QCD strings

-------------------	I------------------	I--------------------	
B	 	 A	 	 B	 	

particle production from QCD strings

Lund string model (e. g. Pythia)

different regions in a string are entangled

subinterval A is described by reduced density matrix

ρA = TrBρ

reduced density matrix is of mixed state form

could this lead to thermal-like effects?
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Entropy and entanglement

consider a split of a quantum system into two A+B

-------------------	I------------------	I--------------------	
B	 	 A	 	 B	 	

reduced density operator for system A

ρA = TrB{ρ}

entropy associated with subsystem A: entanglement entropy

SA = −TrA{ρA ln ρA}

globally pure state S = 0 can be locally mixed SA > 0

coherent information IB〉A = SA − S can be positive
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Microscopic model

QCD in 1+1 dimensions described by ’t Hooft model

L = −ψ̄iγµ(∂µ − igAµ)ψi −miψ̄iψi −
1

2
trFµνF

µν

fermionic fields ψi with sums over flavor species i = 1, . . . , Nf

SU(Nc) gauge fields Aµ with field strength tensor Fµν

gluons are not dynamical in two dimensions

gauge coupling g has dimension of mass

non-trivial, interacting theory, cannot be solved exactly

spectrum of excitations known for Nc →∞ with g2Nc fixed
[’t Hooft (1974)]
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Schwinger model

QED in 1+1 dimension

L = −ψ̄iγµ(∂µ − iqAµ)ψi −miψ̄iψi −
1

4
FµνF

µν

geometric confinement

U(1) charge related to string tension q =
√

2σ

for single fermion one can bosonize theory exactly
[Coleman, Jackiw, Susskind (1975)]

S =

∫
d2x
√
g

{
− 1

2
gµν∂µφ∂νφ−

1

2
M2φ2

− mq eγ

2π3/2
cos
(
2
√
πφ+ θ

)}

Schwinger bosons are dipoles φ ∼ ψ̄ψ
scalar mass related to U(1) charge by M = q/

√
π =

√
2σ/π

massless Schwinger model m = 0 leads to free bosonic theory
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Transverse coordinates

so far dynamics strictly confined to 1+1 dimensions

transverse coordinates may fluctuate, can be described by Nambu-Goto
action (hµν = ∂µX

m∂νXm)

SNG =

∫
d2x
√
−dethµν {−σ + . . .}

≈
∫
d2x
√
g
{
−σ − σ

2
gµν∂µX

i∂νX
i + . . .

}
two additional, massless, bosonic degrees of freedom corresponding to
transverse coordinates Xi with i = 1, 2
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Expanding string solution 1

z

t

external quark-anti-quark pair on trajectories z = ±t
coordinates: Bjorken time τ =

√
t2 − z2, rapidity η = arctanh(z/t)

metric ds2 = −dτ2 + τ2dη2

symmetry with respect to longitudinal boosts η → η + ∆η
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Expanding string solution 2

Schwinger boson field depends only on τ

φ̄ = φ̄(τ)

equation of motion

∂2
τ φ̄+

1

τ
∂τ φ̄+M2φ̄ = 0.

Gauss law: electric field E = qφ/
√
π must approach the U(1) charge of

the external quarks E → qe for τ → 0+

φ̄(τ)→
√
πqe

q
(τ → 0+)

solution of equation of motion [Loshaj, Kharzeev (2011)]

φ̄(τ) =

√
πqe

q
J0(Mτ)
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Gaussian states

theories with quadratic action often have Gaussian density matrix

fully characterized by field expectation values

φ̄(x) = 〈φ(x)〉, π̄(x) = 〈π(x)〉

and connected two-point correlation functions, e. g.

〈φ(x)φ(y)〉c = 〈φ(x)φ(y)〉 − φ̄(x)φ̄(y)

if ρ is Gaussian, also reduced density matrix ρA is Gaussian
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Entanglement entropy for Gaussian state

entanglement entropy of Gaussian state in region A
[Berges, Floerchinger, Venugopalan, JHEP 1804 (2018) 145]

SA =
1

2
TrA

{
D ln(D2)

}
operator trace over region A only

matrix of correlation functions

D(x, y) =

(
−i〈φ(x)π(y)〉c i〈φ(x)φ(y)〉c
−i〈π(x)π(y)〉c i〈π(x)φ(y)〉c

)

involves connected correlation functions of field φ(x) and canonically
conjugate momentum field π(x)

expectation value φ̄ does not appear explicitly

coherent states and vacuum have equal entanglement entropy SA
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Rapidity interval

p

q

τ = const
η = const

region A

region B

z

t

consider rapidity interval (−∆η/2,∆η/2) at fixed Bjorken time τ

entanglement entropy does not change by unitary time evolution with
endpoints kept fixed

can be evaluated equivalently in interval ∆z = 2τ sinh(∆η/2) at fixed
time t = τ cosh(∆η/2)

need to solve eigenvalue problem with correct boundary conditions
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Bosonized massless Schwinger model

entanglement entropy understood numerically for free massive scalars
[Casini, Huerta (2009)]

entanglement entropy density dS/d∆η for bosonized massless Schwinger
model (M = q√

π
)

0 5 10 15 20 25
Δη0.0

0.1

0.2

0.3

0.4
dS/dΔη

Mτ = 1, 10−1, 10−2, 10−3, 10−4, and 10−5
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Conformal limit

For Mτ → 0 one has conformal field theory limit
[Holzhey, Larsen, Wilczek (1994)]

S(∆z) =
c

3
ln (∆z/ε) + constant

with small length ε acting as UV cutoff.

Here this implies

S(τ,∆η) =
c

3
ln (2τ sinh(∆η/2)/ε) + constant

Conformal charge c = 1 for free massless scalars or Dirac fermions.

Additive constant not universal but entropy density is

∂

∂∆η
S(τ,∆η) =

c

6
coth(∆η/2)

→ c

6
(∆η � 1)

Entropy becomes extensive in ∆η !
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Universal entanglement entropy density

for very early times “Hubble” expansion rate dominates over masses and
interactions

H =
1

τ
�M =

q√
π
,m

theory dominated by free, massless fermions

universal entanglement entropy density

dS

d∆η
=
c

6

with conformal charge c

for QCD in 1+1 D (gluons not dynamical, no transverse excitations)

c = Nc ×Nf

from fluctuating transverse coordinates (Nambu-Goto action)

c = Nc ×Nf + 2 ≈ 9 + 2 = 11
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Temperature and entanglement entropy

for conformal fields, entanglement entropy has also been calculated at
non-zero temperature.

for static interval of length L [Korepin (2004); Calabrese, Cardy (2004)]

S(T, l) =
c

3
ln

(
1

πTε
sinh(πLT )

)
+ const

compare this to our result in expanding geometry

S(τ,∆η) =
c

3
ln

(
2τ

ε
sinh(∆η/2)

)
+ const

expressions agree for L = τ∆η (with metric ds2 = −dτ2 + τ2dη2) and
time-dependent temperature

T =
1

2πτ
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Modular or entanglement Hamiltonian 1

p

q

τ = const
η = const

region A

region B

z

t

conformal field theory

hypersurface Σ with boundary on the intersection of two light cones

reduced density matrix [Casini, Huerta, Myers (2011), Arias, Blanco, Casini, Huerta

(2017), see also Candelas, Dowker (1979)]

ρA =
1

ZA
e−K , ZA = Tr e−K

modular or entanglement Hamiltonian K

16 / 26



Modular or entanglement Hamiltonian 2

modular or entanglement Hamiltonian is local expression

K =

∫
Σ

dΣµ ξν(x)Tµν(x).

energy-momentum tensor Tµν(x) of excitations

vector field
ξ
µ
(x) = 2π

(q−p)2
[(q − x)

µ
(x− p)(q − p)

+ (x− p)
µ
(q − x)(q − p) − (q − p)

µ
(x− p)(q − x)]

end point of future light cone q, starting point of past light cone p

inverse temperature and fluid velocity

ξµ(x) = βµ(x) =
uµ(x)

T (x)
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Modular or entanglement Hamiltonian 3

p

q

τ = const
η = const

region A

region B

z

t

for ∆η →∞: fluid velocity in τ -direction, τ -dependent temperature

T (τ) =
~

2πτ

Entanglement between different rapidity intervals alone leads to local
thermal density matrix at very early times !

Hawking-Unruh temperature in Rindler wedge T (x) = ~c/(2πx)
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Physics picture

coherent state vacuum at early time contains entangled pairs of
quasi-particles with opposite wave numbers

on finite rapidity interval (−∆η/2,∆η/2) in- and out-flux of
quasi-particles with thermal distribution via boundaries

technically limits ∆η →∞ and Mτ → 0 do not commute
∆η → ∞ for any finite Mτ gives pure state
Mτ → 0 for any finite ∆η gives thermal state with T = 1/(2πτ)
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Bosonized massive Schwinger model
[ongoing work with Lara Kuhn, Jürgen Berges]
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Figure 1: Potential of the coherent background field V (�) = 1
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⇡� + ✓) for

vacuum angles ✓ = 0 (left) and ✓ = ⇡ (right). The di↵erent colors represent di↵erent coupling
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Figure 2: Background field for vacuum angle ✓ = 0 (left) and ✓ = ⇡ (right) with di↵erent couplings

g . The dashed lines indicate the position of the minimum around which � oscillates for M⌧ � 1.

absolute minimum �vac of the potential in figure 1. Additionally we have to consider the electric

field generated by the two external charges: Classically (without screening) the electric field of two

relativistic point charges ±e flying in opposite directions would be given by E = ±e⇥(⌧) which

goes to e for ⌧ ! 0+. Furthermore one can assume that for ⌧ ! 0+ quantum e↵ects are negligible

[4] so that the initial value of the coherent field is given for ⌧ ! 0+ by �(0) = �vac +
p
⇡.

Starting from this value, the background field rolls down the potential and ends up oscillating

around one of the minima. On this way it might transit from one minimum to another. The

oscillation can be explained by the production of quark-antiquark pairs in an electric field. At first

the pairs are on top of each other, then they separate where the quarks/antiquarks move towards the

positive/negative initial charge [5]. During this process the electric field performs work and changes

sign. This occurs repeatedly, each time less quark-antiquark pairs are created and eventually the

electric field falls o↵ to one of the minima.

In figure 2 the behavior of �(⌧) is shown for di↵erent values of the rescaled coupling constant

g and the vacuum angles ✓ = 0 (left panel) and ✓ = ⇡ (right panel). In the beginning all curves

behave similar (except for being shifted due to di↵erent initial values). The reason for this is, that,

as one can see in equation (3.2), for small M⌧ the g-independent term 1
⌧ @⌧�(⌧) dominates. For

– 4 –

scalar theory with potential

V (Φ) =
1

2
M2Φ2 + J cos(2

√
πφ+ θ)

dimensionless coupling strength g = 2
√
πJ/M2

initial value
Φ(0) = Φvac +

√
π
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Time evolution of background field

solve equation of motion for background field in expanding geometry

non-linear oscillations damped by expansion
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[4] so that the initial value of the coherent field is given for ⌧ ! 0+ by �(0) = �vac +
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Starting from this value, the background field rolls down the potential and ends up oscillating

around one of the minima. On this way it might transit from one minimum to another. The

oscillation can be explained by the production of quark-antiquark pairs in an electric field. At first

the pairs are on top of each other, then they separate where the quarks/antiquarks move towards the

positive/negative initial charge [5]. During this process the electric field performs work and changes

sign. This occurs repeatedly, each time less quark-antiquark pairs are created and eventually the

electric field falls o↵ to one of the minima.
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Excitations

consider now perturbations around expanding background fields

linear problem: quantization in time dependent situation

(quasi-) particle production

similar: cosmology, strong electric fields

calculate this for different parameters as function of wave number
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Figure 4: Spectrum for ✓ = 0, g = 0.2, 2.0 (left) at di↵erent M⌧ . The spectra of ✓ = ⇡ and small

g look similar to these. Spectrum for ✓ = ⇡, g = 3.0 (right) at di↵erent M⌧ . For large g the spectra

of both ✓ = 0 and ✓ = ⇡ look similar to this one.

2 it is shown that for ✓ = 0 and g = 0.4 the asymptotic value of the background field is negative

(i.e. left minimum in the potential) whereas for g = 2.0 it is positive. Between these two values

�asymp changes multiple times, in particular for g & 1
2
p
⇡
, which should lead to several maxima

that are not fully resolved in figure 5. The last maximum in the total particle number appears at

approximately g = 2.3 because �asymp changes from one of the global minima to a false vacuum

(figure 1). As g is increased further the asymptotic value moves closer to the initial value such that

the amplitude of the oscillation of � goes to zero which results in a vanishing N
�⌘ . For ✓ = ⇡ the

large g behavior is similar. The total particle number N
�⌘ has only one maximum because for small

g . 1.4 the asymptotic value is �asymp = 0 and for large g & 1.4 it approaches �asymp =
p
⇡. Only

one change of asymptotic value arises.

Observing that the decay of N/�⌘ looks exponential, we make a fit for large g (cf. figure 5)

and there approximately

N

�⌘
= 0.000041 ⇥ exp(�0.17g + 25/g) for ✓ = 0,

N

�⌘
= 0.000532 ⇥ exp(�0.31g + 13/g) for ✓ = ⇡. (5.17)

Furthermore, because g = m exp(�)
e , the dependence of N

�⌘ on g can be translated into a relation

between the total particle number and the fermion mass m which is in fact exponential in m for

large m. Note that this is in contrast to the standard Schwinger pair production rate in a constant

electric field with scales Gaussian for large mass m.

For large g the fitted function (5.17) becomes e↵ectively a Boltzmann factor exp(�m/T ) with

temperature

T ⇠ p
� (5.18)

proportional to the square root of the string tension �. This kind of dependence of the temperature

on the string tension is also valid for the hadronization temperature in high energy collisions [13].

To obtain an estimate value of the temperature we can use the QCD string tension � = 0.19 GeV2

given in [13]. Then we get T✓=0 = 2.04 GeV for ✓ = 0 and T✓=⇡ = 1.12 GeV for ✓ = ⇡.

– 10 –
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Asymptotic particle spectrum

particles per unit rapidity

characteristic peaks due to resonance-like phenomena

for large coupling g = 2
√
πJ/M2 exponential decay
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Figure 5: Total particle number per rapidity interval N
�⌘ at M⌧ = 510 in dependence of the

coupling g for ✓ = 0 (left), where the fit was made for 3.5  g  7.0 and ✓ = ⇡ (right), where the

fit was made for 2.2  g  7.0.

6 Conclusion

We considered a quark-antiquark pair in 1+1 dimensions and investigated particle production after

a collision.

At first we analyzed the behavior of a coherent field. We observe an oscillation and transition

between the minima of the potential (figure 1 and 2).

Then we added small fluctuations and computed the mode functions f (figure 3). These are

growing for some combinations of ✓, g and k what is also visible in the particle spectra (figure 4)

which show clear maxima at finite k. We argued that this behavior is probably related to tachyonic

resonance.

The spectra were computed in dependence of the momentum k in Bjorken coordinates. Trans-

lating them into Minkowski space requires knowledge of momentum and the exact trajectory of the

produced particles which probably is not accessible in experiment.

In addition to the spectra, another result of our calculations are the total particle numbers per

rapidity interval (figure 5). We recovered maxima at those g where the spectra already had shown

large occupation numbers. For large g (large fermion masses m � e) the total particle number per

rapidity interval shows a Boltzmanian decay and a temperature can be assigned to the particles,

which could be measured in experiments. Due to the Schwinger model being a toy model for QCD

[14] the temperature calculated here might have been similar to the hadronization temperature of

high energy collisions. This is not the case since our results are too large by factor of approximately

ten. In fact, QED in 1 + 1 dimensions lacks some important features of QCD like di↵erent fermion

flavors and the non-abelian symmetry group SU(3).

Furthermore, our results could be improved by considering backreactions from the fluctuations

to the background field and performing one or higher loop calculations. Additionally, the e↵ect of

tunneling should be taken into account. Especially in the case of large g the background field will

decay from the false vacuum to the true one.
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Quantum simulation

[ongoing work with Lara Kuhn]
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Figure 6: Comparison of the potential of the cold atom system (orange) and the potential
of the Massive Schwinger model (blue) for two vacuum angles ✓ = 0,⇡ and
coupling constant g = 3.5. The parameters V0 and � of the cold atom system
have been chosen such that the two potentials match best possible in the region
between the true and false vacuum.

4 Vacuum decay in the Schwinger model

The ultracold atom system presented in the last section can serve as a quantum simula-
tor for the Massive Schwinger model, because their potentials are very similar in some
regions. The Massive Schwinger model describes QED with one fermion of mass m and
charge e in 1 + 1 dimensions, its bosonized Lagrangian is given by

L = �1

2
@µ�@

µ�� 1

2
M2�2 � J cos (2

p
⇡�+ ✓) (35)

where M = ep
⇡

and J = me exp (�)

2⇡3/2 . � is the Euler constant and ✓ is the so called vacuum
angle [ColemanJackiwSusskind, Tong:gt] which we will either set to ✓ = 0 or ✓ = ⇡.
In figure 6 one can see the potential of the Massive Schwinger model together with
that of the cold atom system where the parameters V0 and � are chosen such that they
coinicide at the false �+ and true vacuum ��. Also the field � is scaled to achieve this.
From the matching of the two potentials we can numerically find a mapping between the
parameters g and �

g = 1.349438729844706�2 + 0.6311026780779219 for ✓ = 0 (36)

g = 0.6887508140270655�2 + 0.48071944514160164 for ✓ = ⇡ (37)

Now the analysis from the last section can be repeated for the Schwinger model. We
assume that the field � initially is at the false vacuum �+ everywhere in space. In general
the Schwinger model has several false vacua, each described by a local (but not global)
minimum of the potential. We will focus on one of these, the one with smallest positive
value of �. The position of �+ depends on the choices of the vacuum angle ✓ and the

10

two one-dimensional Bose-Einstein condensates with tunnel coupling allow
to realize model Lagrangian for relative phase φ = ϕ1 − ϕ2

L =
1

2
φ̇2 − c2s

2
(∇φ)2 − V0

[
− cos(φ) +

1

2
λ2 sin2(φ)

]
with velocity of sound cs

λ from periodic in time modulation of tunnel coupling [Fialko, Opanchuk,

Sidorov, Drummond & Brand (2014)] (challenging to implement)
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Tunneling and the bounce

[ongoing work with Lara Kuhn]

consider field in metastable vacuum

tunneling can be described by semi-classical methods

false vacuum decay by bounce solution [S. Coleman (1977)]

could be induced artificially

interior of forward sound cone resembles closely expanding string solution
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Figure 3: Bounce solution �B (outside the forward and backward light cone) and back-

ground field � (inside the forward and backward light cone) in Minkowski
coordinates for � = 1.1. The colorbar indicates the values of both fields.

and impose the normalization condition

� if(⌧, k)⌧@⌧f
⇤(⌧, k) + if⇤(⌧, k)⌧@⌧f(⌧, k) = 1. (29)

For small ⌧ the dominant terms in equation (28) are those with a ⌧ in the denominator
whereas the last term proportional to V0 becomes irrelevant. Therefore, Bessel type
functions are a valid solution initially and we choose Hankel functions of second kind

finit(⌧, k) =

p
⇡

2
e

⇡k
2 H

(2)
ik (

p
V0

cs
⌧), (30)

because they represent particles with respect to Minkowski space. In figure 4 one can see
some modefunctions where we used equation finit(10�5, k) as initial values. We observe
that for any wave vector k, the real and the imaginary part of the mode functions have
the same frequency. The relative size of the two parts changes. Furthermore for large �
the evolution of the mode functions is very similar to the Hankel functions that was used
to determine the initial values. This is, because the background field is close to zero all
the time and the last term in equation(28) is essentially constant. On the other hand, for
small � we observe that some modes grow strongly. This only happens at small � because
the background field needs to be in a region with negative curvature. Additionally we
can investigate the behavior of the mode functions for large ⌧ . Then the background
field eventually goes to zero and equation (28) simplifies to

✓
@2
⌧ +

1

⌧
@⌧ +

k2

⌧2
+

V0

c2
s

�
1 + �2

�◆
f(⌧, k) = 0 (31)
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Conclusions

rapidity intervals in an expanding string are entangled

at very early times theory effectively conformal

1

τ
� m, q

entanglement entropy extensive in rapidity dS
d∆η

= c
6

determined by conformal charge c = Nc ×Nf + 2

reduced density matrix for conformal field theory is of locally thermal form
with temperature

T =
~

2πτ

expanding QCD string dynamics could be quantum simulated through two
frequency sine-Gordon model

V (φ) ∼
[
− cos(φ) +

1

2
λ2 sin2(φ)

]
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