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The thermal model puzzle

@ elementary particle collision experiments such as e

+

some thermal-like features
o particle multiplicities well described by thermal model
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collisions show

[Becattini, Casterina, Milov & Satz, EPJC 66, 377 (2010)]

@ conventional thermalization by collisions unlikely
@ more thermal-like features difficult to understand in PYTHIA

[Fischer, Sjéstrand (2017)]

@ alternative explanations needed
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QCD strings

==

B A B

@ particle production from QCD strings
o Lund string model (e. g. PYTHIA)
o different regions in a string are entangled

@ subinterval A is described by reduced density matrix

pa=Trpp

@ reduced density matrix is of mixed state form

@ could this lead to thermal-like effects?
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Entropy and entanglement

@ consider a split of a quantum system into two A + B

(N
==

B A B

o reduced density operator for system A

pa = Trp{p}

@ entropy associated with subsystem A: entanglement entropy

Sa=—-Tra{palnpa}

globally pure state S = 0 can be locally mixed S4 > 0

o coherent information Ipy4 = Sa — S can be positive
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Microscopic model

QCD in 141 dimensions described by 't Hooft model

_ — 1
L = —Q,Zli’}/“(au — ZgAM)’llJZ — mzwzwl — itrF,WF“”

o fermionic fields t; with sums over flavor species i = 1,..., Ny
o SU(N.) gauge fields A, with field strength tensor F,,,

@ gluons are not dynamical in two dimensions

@ gauge coupling g has dimension of mass

@ non-trivial, interacting theory, cannot be solved exactly

@ spectrum of excitations known for N, — oo with g?N.. fixed
['t Hooft (1974)]
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Schwinger model
e QED in 1+1 dimension

_ ) _ 1 .
¥ = —dh"y“(@u — ZqAM)L/)i — mﬂﬁﬂbl — Z F,“,FH

@ geometric confinement
o U(1) charge related to string tension ¢ = /20

o for single fermion one can bosonize theory exactly
[Coleman, Jackiw, Susskind (1975)]

S = /d%c\/g{ - %g“"amayqs - %M%Q
maqe”

273/2

cos (2v/7¢ + 0) }

o Schwinger bosons are dipoles ¢ ~ 1)

@ scalar mass related to U(1) charge by M = q/\/m = \/20/7
@ massless Schwinger model m = 0 leads to free bosonic theory
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Transverse coordinates

@ so far dynamics strictly confined to 1+1 dimensions

@ transverse coordinates may fluctuate, can be described by Nambu-Goto
action (huy = 0, X™ 0y Xm)

Sne = [ d*x+/—dethy, {—o+...}

= /de\/g{—cr — %g“”@,tXiauXi +.. }

@ two additional, massless, bosonic degrees of freedom corresponding to
transverse coordinates X* with 1 = 1,2
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Ezxpanding string solution 1

o external quark-anti-quark pair on trajectories z = =+t
e coordinates: Bjorken time 7 = \/t2 — 22, rapidity n = arctanh(z/t)
o metric ds? = —dr? + 72dn?

@ symmetry with respect to longitudinal boosts n — 1 4+ An
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Ezpanding string solution 2

o Schwinger boson field depends only on T

¢ = ¢(7)

@ equation of motion
I _
076+ =0-¢+ M*¢ =0.
T

o Gauss law: electric field E = q¢/+/7 must approach the U(1) charge of
the external quarks £ — g. for 7 — 04

O
@ solution of equation of motion [Loshaj, Kharzeev (2011)]

6(r) = YI% y(ar)
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Gaussian states

o theories with quadratic action often have Gaussian density matrix

o fully characterized by field expectation values

$(x) = (¢(x)), 7i(z) = (r(z))

and connected two-point correlation functions, e. g.

(0(2)9(y))e =

(6(2)8(v)) — d(x)b(y)

o if p is Gaussian, also reduced density matrix p4 is Gaussian
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Entanglement entropy for Gaussian state

@ entanglement entropy of Gaussian state in region A
[Berges, Floerchinger, Venugopalan, JHEP 1804 (2018) 145]

Sa= 3 Ta {D(D?)}

@ operator trace over region A only
@ matrix of correlation functions

(i@ i(0@)o))
Day) = (—i<w<x>w<y>>c i<w(m>¢<y>>c)

@ involves connected correlation functions of field ¢(z) and canonically
conjugate momentum field 7(x)

o expectation value ¢ does not appear explicitly

@ coherent states and vacuum have equal entanglement entropy Sa
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Rapidity interval

——— t=const
————— n = const
----- region A
region B

o consider rapidity interval (—An/2, An/2) at fixed Bjorken time T

@ entanglement entropy does not change by unitary time evolution with
endpoints kept fixed

@ can be evaluated equivalently in interval Az = 27 sinh(An/2) at fixed
time t = 7 cosh(An/2)

@ need to solve eigenvalue problem with correct boundary conditions
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Bosonized massless Schwinger model

@ entanglement entropy understood numerically for free massive scalars
[Casini, Huerta (2009)]

@ entanglement entropy density d.S/dAn for bosonized massless Schwinger
= %)
ds/dan
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Conformal limit

e For Mt — 0 one has conformal field theory limit
[Holzhey, Larsen, Wilczek (1994)]

S(Az) = % In (Az/€) + constant

with small length € acting as UV cutoff.

@ Here this implies

S(r,An) = gln (27 sinh(An/2)/e) + constant

o Conformal charge ¢ = 1 for free massless scalars or Dirac fermions.
o Additive constant not universal but entropy density is
1o} c
——S(1, An) =—coth(An/2
ann (7, An) =g coth(An/2)

%g (Anp>1)

Entropy becomes extensive in An !
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Universal entanglement entropy density

o for very early times “Hubble” expansion rate dominates over masses and

interactions

1
H=->M="L n
T

NG

@ theory dominated by free, massless fermions

@ universal entanglement entropy density

ds c

dAn 6
with conformal charge ¢

o for QCD in 141 D (gluons not dynamical, no transverse excitations)

c:NCXNf

o from fluctuating transverse coordinates (Nambu-Goto action)

c=NcexNy+2=9+2=11
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Temperature and entanglement entropy

@ for conformal fields, entanglement entropy has also been calculated at
non-zero temperature.

o for static interval of length L [Korepin (2004); Calabrese, Cardy (2004)]

S(T,1) = gln (i sinh(ﬂLT)) + const

@ compare this to our result in expanding geometry

S(r,An) = gln (2?7— sinh(An/2)) + const

o expressions agree for L = 7An (with metric ds* = —dr? 4 72dn?) and
time-dependent temperature
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Modular or entanglement Hamiltonian 1

——— T=const
————— n = const
————— region A
region B

@ conformal field theory

hypersurface ¥ with boundary on the intersection of two light cones

reduced density matrix [Casini, Huerta, Myers (2011), Arias, Blanco, Casini, Huerta
(2017), see also Candelas, Dowker (1979)]

1
paA = Z—Ae*K, Za=Tr e K

@ modular or entanglement Hamiltonian K
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Modular or entanglement Hamiltonian 2

@ modular or entanglement Hamiltonian is local expression

K:/EdEM & () T ().

@ energy-momentum tensor T+ (x) of excitations
@ vector field
¢(x) = 2=3l(a—2)"(z —p)(a —p)
+ (@ —p)" (¢ —2)(q—p) — (¢ —p)"(z - p)(g— )]
end point of future light cone ¢, starting point of past light cone p

@ inverse temperature and fluid velocity

u* ()
T(a)

§(z) =p"(z) =
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Modular or entanglement Hamiltonian 3

T = const
————— n = const
————— region A
region B

o for An — oo: fluid velocity in 7-direction, T-dependent temperature

h
T(T) = %

o Entanglement between different rapidity intervals alone leads to local
thermal density matrix at very early times !

o Hawking-Unruh temperature in Rindler wedge T'(x) = he/(27z)
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Physics picture

o coherent state vacuum at early time contains entangled pairs of
quasi-particles with opposite wave numbers

e on finite rapidity interval (—An/2, An/2) in- and out-flux of
quasi-particles with thermal distribution via boundaries

o technically limits Anp — oo and M7 — 0 do not commute

o An — oo for any finite M7 gives pure state
e M7 — 0 for any finite An gives thermal state with T'= 1/(277)
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Bosonized massive Schwinger model

[ongoing work with Lara Kuhn, Jiirgen Berges]

@ scalar theory with potential

V(@) = %M2<I>2 + Jcos(2y/7d + 0)

o dimensionless coupling strength g = 2\/7J/M?

e initial value
®(0) = Pyac + V7
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Time evolution of background field

@ solve equation of motion for background field in expanding geometry
@ non-linear oscillations damped by expansion

0=0 0=m
-g=02 -g=04 —¢g=2.0 -—g=3.0 -9g=02 -¢g=12 ¢g=20 —-g=3.0
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FEzxcitations

consider now perturbations around expanding background fields

linear problem: quantization in time dependent situation

(quasi-) particle production

similar: cosmology, strong electric fields

calculate this for different parameters as function of wave number
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Asymptotic particle spectrum,

@ particles per unit rapidity
@ characteristic peaks due to resonance-like phenomena

o for large coupling g = 2\/EJ/M2 exponential decay

0=0
101 4 fit 105 E
= 7 =
a b d 1027
2, 103 4 =
—13
1071 4 10
\\
0 2 4 6 0
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Quantum simulation

[ongoing work with Lara Kuhn]

@ two one-dimensional Bose-Einstein condensates with tunnel coupling allow
to realize model Lagrangian for relative phase ¢ = p1 — @2

2
L= SF SV Vo |- cos(6) + 2% sin (9)

with velocity of sound cs

o A from periodic in time modulation of tunnel coupling [Fialko, Opanchuk,
Sidorov, Drummond & Brand (2014)] (challenging to implement)
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Tunneling and the bounce

[ongoing work with Lara Kuhn]
o consider field in metastable vacuum
@ tunneling can be described by semi-classical methods
o false vacuum decay by bounce solution [S. Coleman (1977)]

@ could be induced artificially

interior of forward sound cone resembles closely expanding string solution
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Conclusions

rapidity intervals in an expanding string are entangled

at very early times theory effectively conformal

1
- > m,q
T

entanglement entropy extensive in rapidity % =<
determined by conformal charge ¢ = N. x Ny 42

reduced density matrix for conformal field theory is of locally thermal form
with temperature

expanding QCD string dynamics could be quantum simulated through two
frequency sine-Gordon model

V(6) ~ |~ cos(6) + 53 sin(9)
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