Net-charge fluctuations as a probe of the chiral cross over transition

Mesut Arslandok

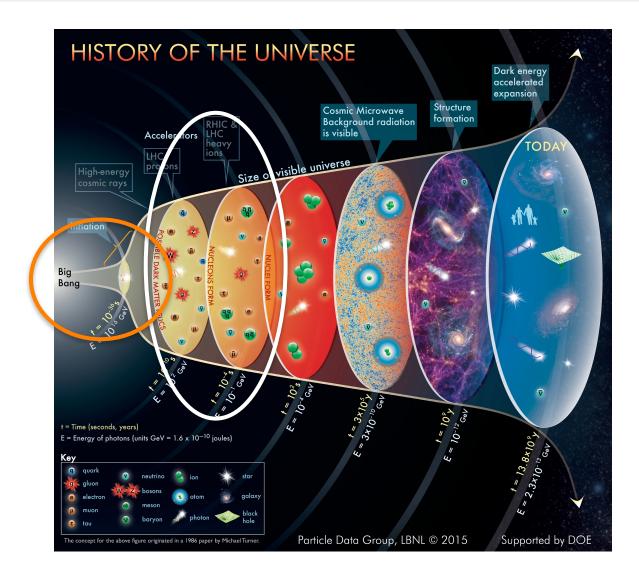
Physikalisches Institut Universität Heidelberg

on behalf of ALICE Collaboration and ISOQUANT (A01) Johanna Stachel, Peter Braun Munzinger, Anar Rustamov, Klaus Reygers, Alice Ohlson

Quantum Systems in Extreme Conditions (QSEC) 26 September 2019, Heidelberg, Germany

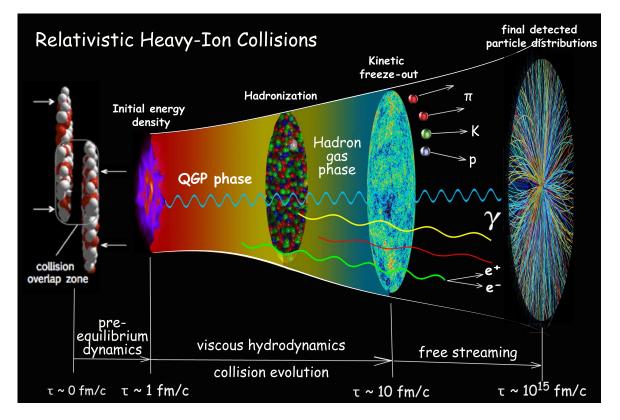
UNIVERSITÄT HEIDELBERG ZUKUNFT SEIT 1386

"Philosophical GOAL": History of the Universe



Scientific GOAL: Hot QCD Matter in Lab

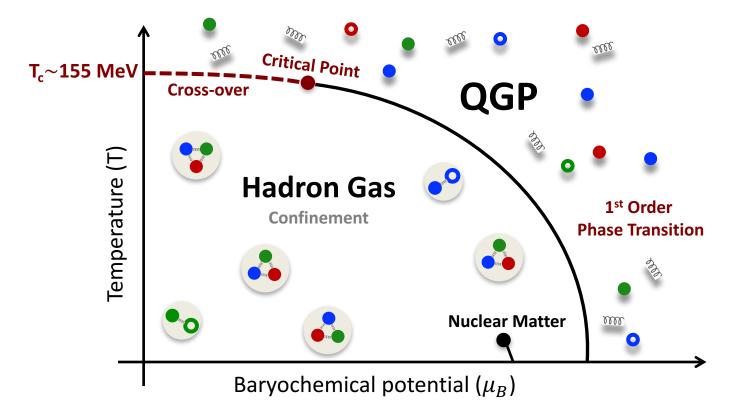
Little-Bang: Relativistic Heavy-ion Collisions



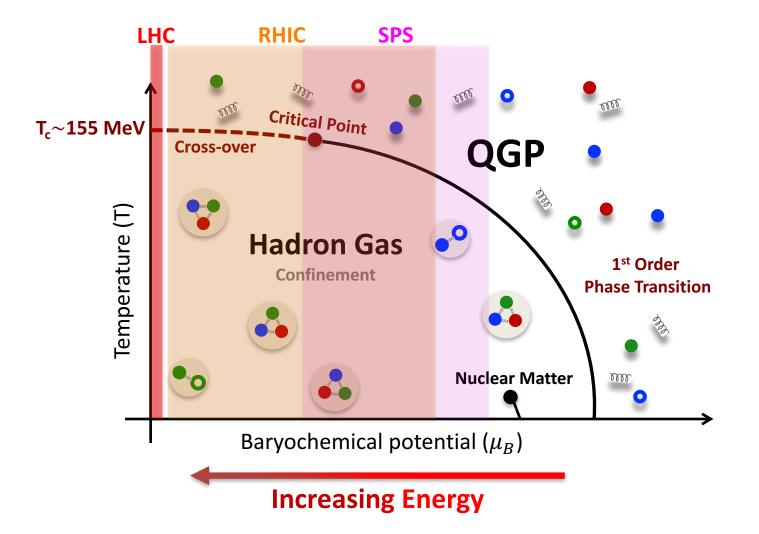
Quark-Gluon Plasma (QGP): A state of matter where the quarks and gluons are the relevant degrees of freedom, exist at few μs after the Big-Bang

- > Chiral symmetry: $m_p \approx 937 \text{ MeV} \leftrightarrow 2m_u + m_d \approx 10 \text{ MeV}$
- Confinement: No isolated quarks seen thus far

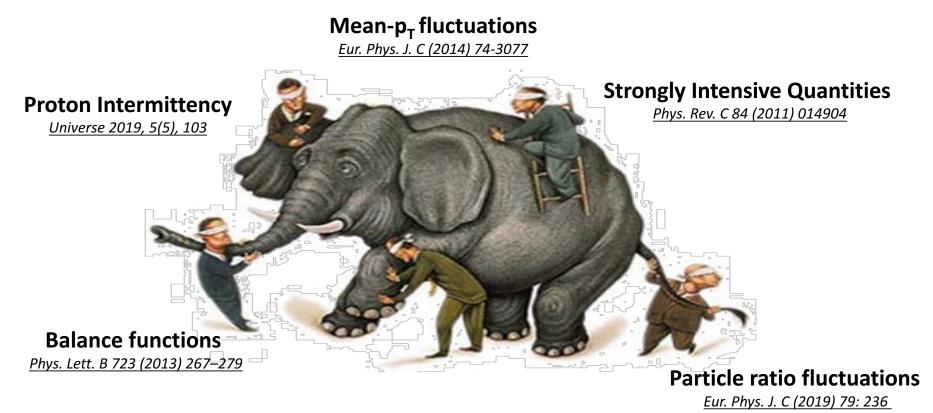
QCD phase diagram



QCD phase diagram



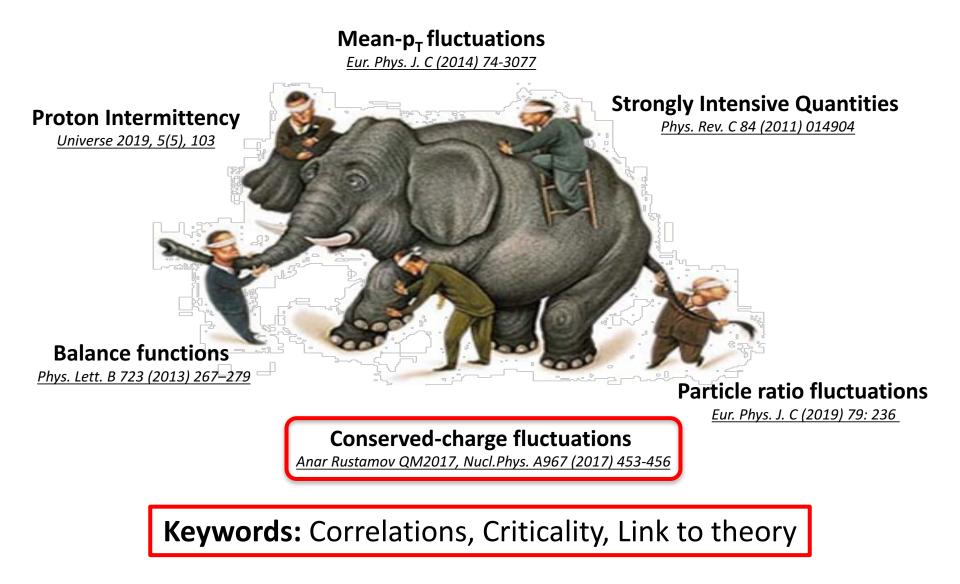
What to study? \rightarrow Fluctuations



Conserved-charge fluctuations

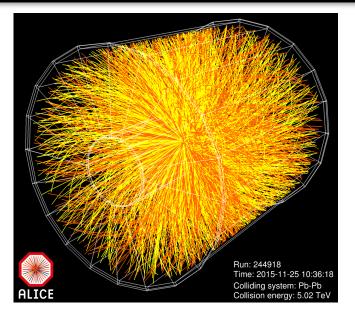
Anar Rustamov QM2017, Nucl. Phys. A967 (2017) 453-456

What to study? \rightarrow Fluctuations



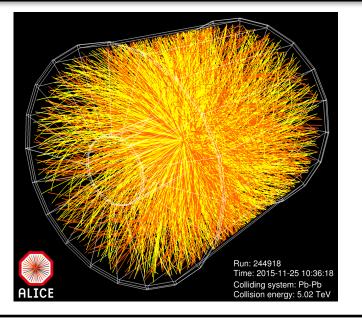
Question #1: Why fluctuations?

Multiplicity distributions



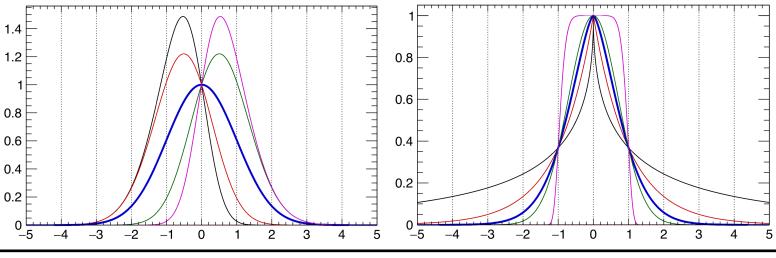
~15000 charged particles are detected in one central Pb-Pb collision

Multiplicity distributions



~15000 charged particles are detected in one central Pb-Pb collision

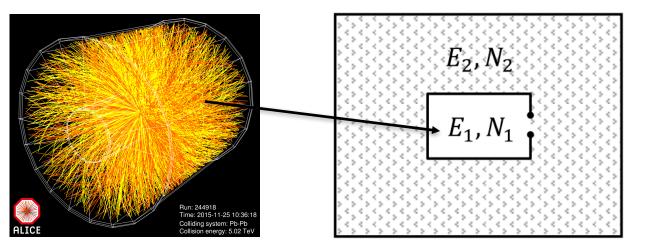
Moments of the multiplicity distributions



QSEC, 26.09.2019

Mesut Arslandok, Heidelberg (PI)

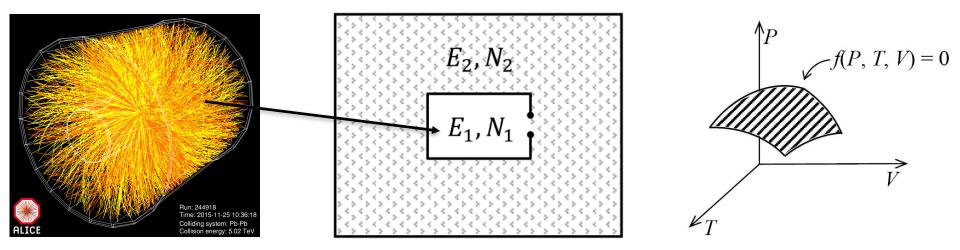
What kind of a system we are talking about?



Grand canonical ensemble where particles are in a thermal equilibrium

• Energy (E) and number of particles (N) are **not conserved** in each microstate

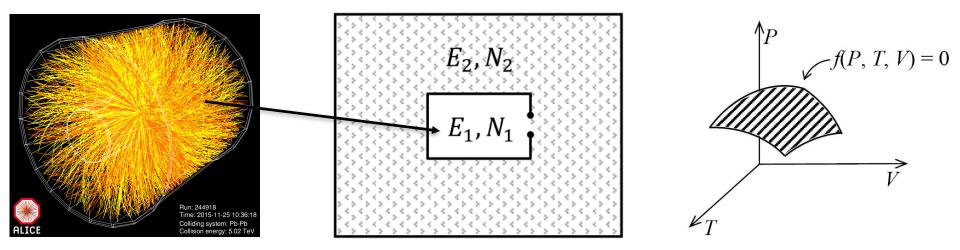
What kind of a system we are talking about?



Grand canonical ensemble where particles are in a thermal equilibrium

- Energy (*E*) and number of particles (*N*) are **not conserved** in each microstate
- EOS can be represented by a surface in the state space spanned by P, V and T

What kind of a system we are talking about?



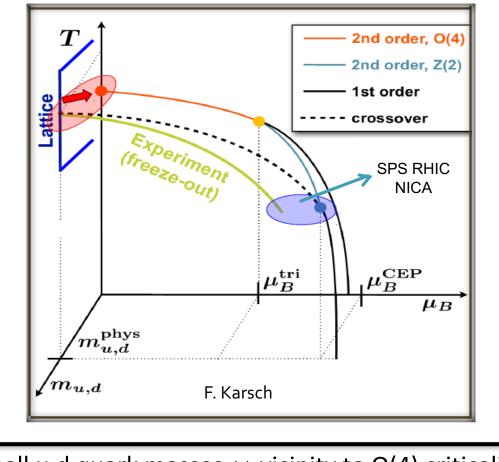
Grand canonical ensemble where particles are in a thermal equilibrium

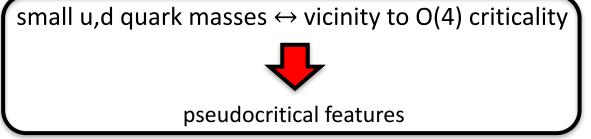
- Energy (E) and number of particles (N) are **not conserved** in each microstate
- EOS can be represented by a surface in the state space spanned by P, V and T
- Conservation laws are applied on average
- Chemical potential (μ_B) , Volume (V) and Temperature (T) are constant
- For a given state E_i and N_i grand canonical partition function

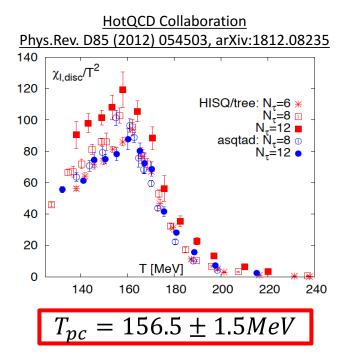
$$Z_{GCE}(T,V,\mu) = \sum_{j} \exp\left[-\frac{E_{j} - \mu N_{j}}{T}\right] \qquad \Longrightarrow \qquad \langle N \rangle = \sum_{j} N_{j} p_{j} = T \frac{\partial \ln Z_{GCE}}{\partial \mu}\Big|_{V}$$

Question #2: How to link experiment to theory?

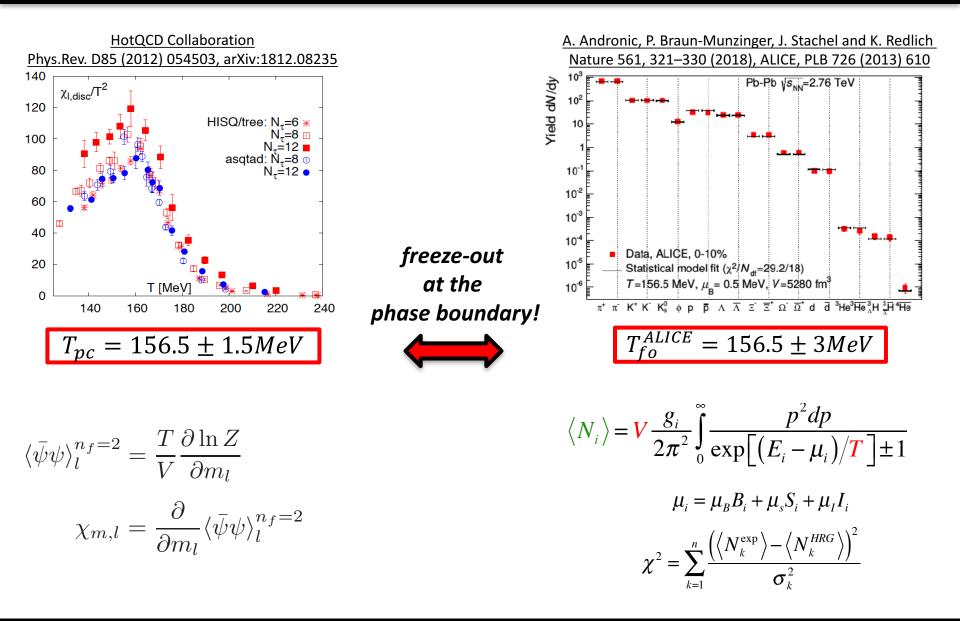
Closer look at QCD Phase diagram: Nature of chiral phase transition







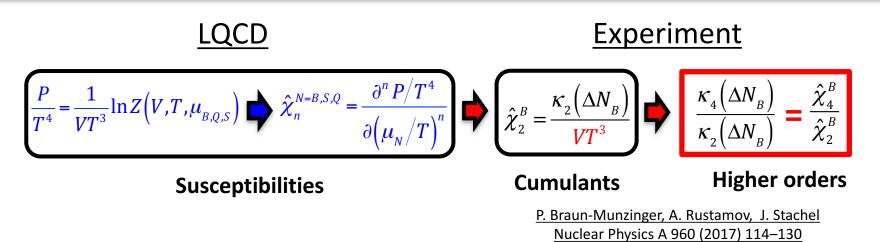
$$\langle \bar{\psi}\psi \rangle_l^{n_f=2} = \frac{T}{V} \frac{\partial \ln Z}{\partial m_l}$$
$$\chi_{m,l} = \frac{\partial}{\partial m_l} \langle \bar{\psi}\psi \rangle_l^{n_f=2}$$

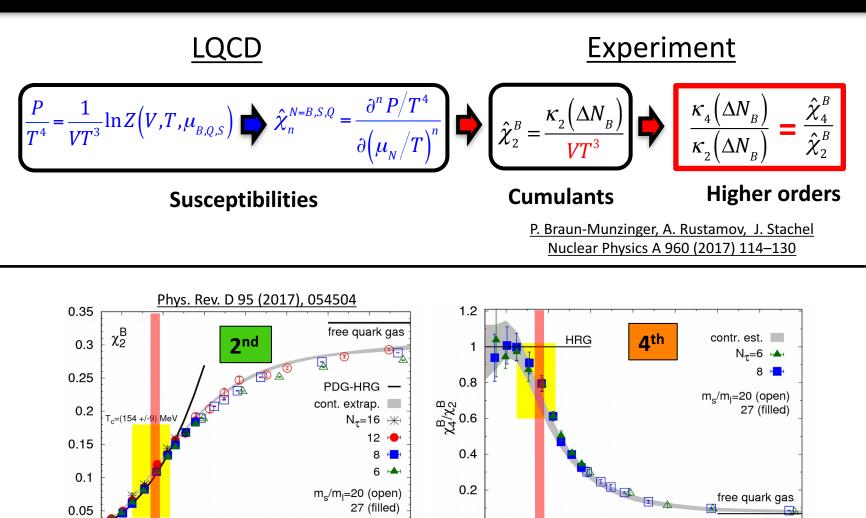


<u>LQCD</u>

$$\frac{P}{T^4} = \frac{1}{VT^3} \ln Z \left(V, T, \mu_{B,Q,S} \right) \bigoplus \hat{\chi}_n^{N=B,S,Q} = \frac{\partial^n P / T^4}{\partial \left(\mu_N / T \right)^n}$$

Susceptibilities





At 4th order LQCD shows a deviation from Hadron Resonance Gas (HRG)

T [MeV]

T [MeV]

Question #3: What is the baseline?

Skellam distribution

$$X = N_B - N_{\overline{B}}$$

rth central moment:

$$\mu_r \equiv \langle (X - \langle X \rangle)^r \rangle = \sum_X (X - \langle X \rangle)^r P(X)$$

First four cumulants

$$\kappa_1 = \langle X \rangle, \quad \kappa_2 = \mu_2,$$

 $\kappa_3 = \mu_3, \quad \kappa_4 = \mu_4 - 3\mu_2^2$

Uncorrelated Poisson limit:

$$\left\langle N_B N_{\overline{B}} \right\rangle = \left\langle N_B \right\rangle \left\langle N_{\overline{B}} \right\rangle$$

Skellam distribution

$$X = N_B - N_{\overline{B}}$$

rth central moment:

$$\mu_r \equiv \langle (X - \langle X \rangle)^r \rangle = \sum_X (X - \langle X \rangle)^r P(X)$$

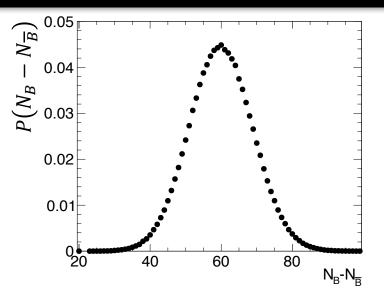
First four cumulants

$$\kappa_1 = \langle X \rangle, \quad \kappa_2 = \mu_2,$$

 $\kappa_3 = \mu_3, \quad \kappa_4 = \mu_4 - 3\mu_2^2$

Uncorrelated Poisson limit:

$$\langle N_B N_{\overline{B}} \rangle = \langle N_B \rangle \langle N_{\overline{B}} \rangle$$



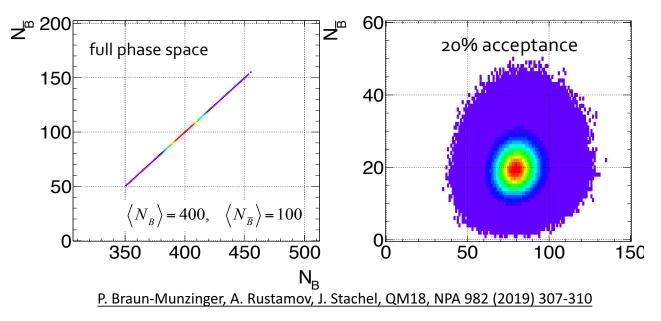
Difference between two independent Poissonian distributions

$$\kappa_n = \langle N_B \rangle + (-1)^n \langle N_{\overline{B}} \rangle$$

$$\frac{\kappa_{2n+1}}{\kappa_{2k}} = \frac{\langle n_B \rangle - \langle n_{\bar{B}} \rangle}{\langle n_B \rangle + \langle n_{\bar{B}} \rangle}$$

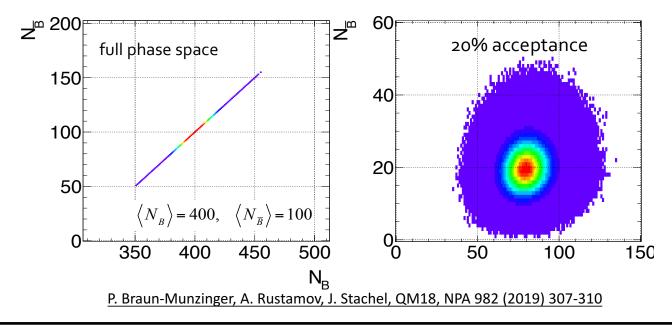
Importance of acceptance

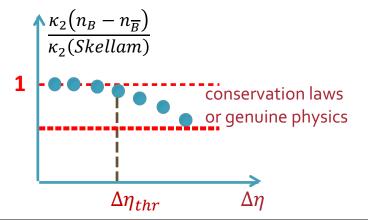
- > Fluctuations of net-baryons appear only inside **finite acceptance**
- Baryon number conservation imposes subtle correlations



Importance of acceptance

- Fluctuations of net-baryons appear only inside finite acceptance
- Baryon number conservation imposes subtle correlations





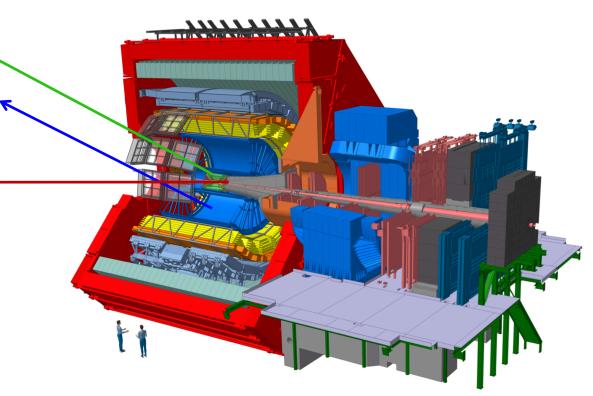
- Limit of very small acceptance
 - vanishing or invisible dynamical fluctuations
- Acceptance has to be large enough

From data to physics

A Large Ion Collider Experiment

Main detectors used:

- Inner Tracking System (ITS)
 - Tracking and vertexing
- Time Projection Chamber (TPC).
 - Tracking and Particle identification (PID)
- ≻ Vertex 0 (V0) ←
 - Centrality determination



A Large Ion Collider Experiment

Main detectors used:

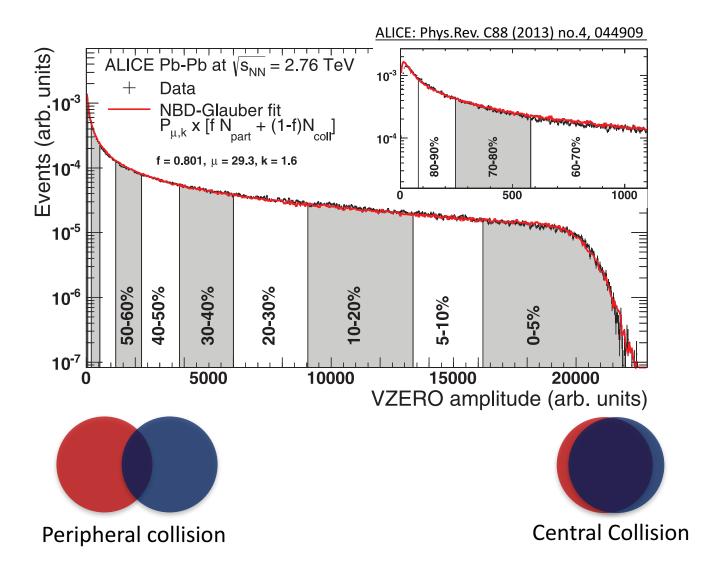
- Inner Tracking System (ITS)
 - Tracking and vertexing
- Time Projection Chamber (TPC).
 - Tracking and Particle identification (PID)
- ≻ Vertex 0 (V0) ←
 - Centrality determination

Data Set:

- Pb-Pb collisions
 - $\sqrt{s_{NN}} = 5.02$ TeV, ~60 M events
 - $\sqrt{s_{NN}} = 2.76$ TeV, ~12 M events
- Model
 - HIJING, ~6 M events

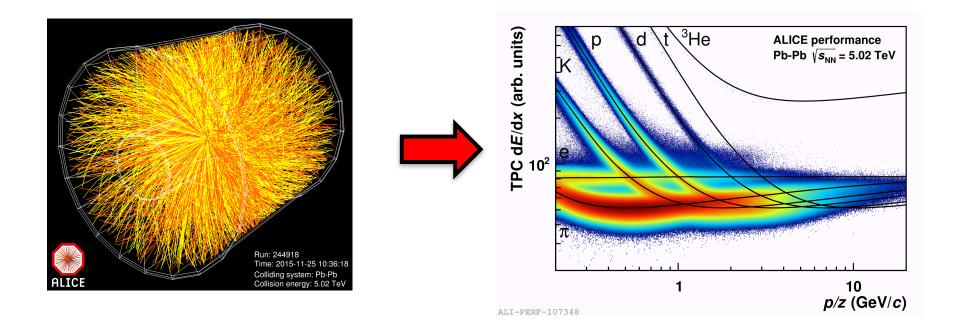
(independent nucleus-nucleus collisions \rightarrow No QGP)

Volume in experiment? \rightarrow "Centrality"

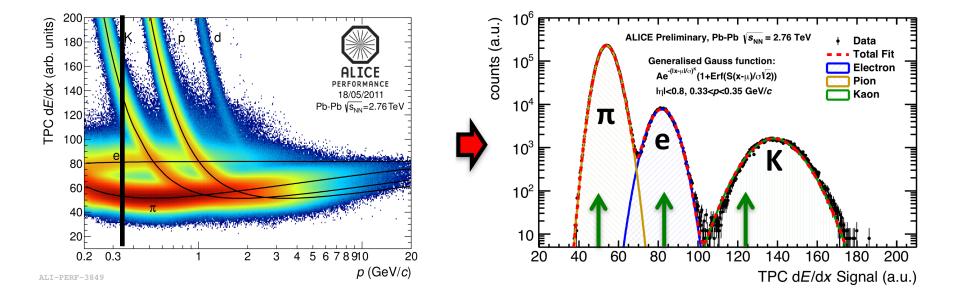


Particle Identification?

via specific energy loss as function of momentum in the TPC

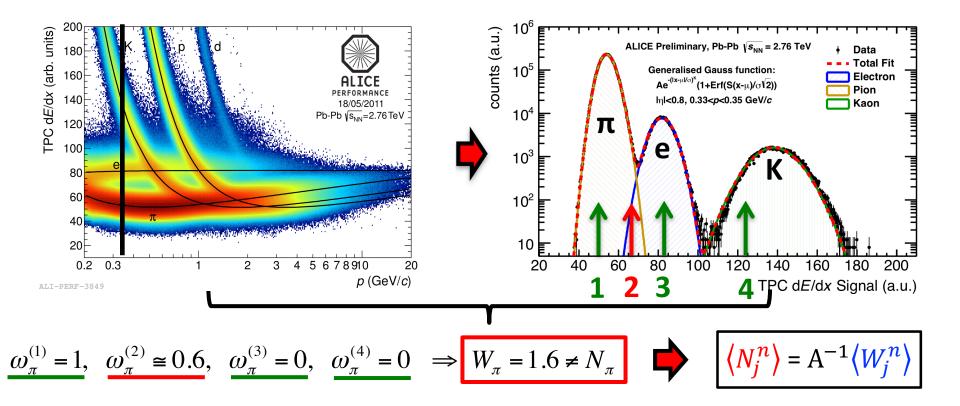


Identity method



Identity method

<u>Count probabilities</u> to be of a given particle type



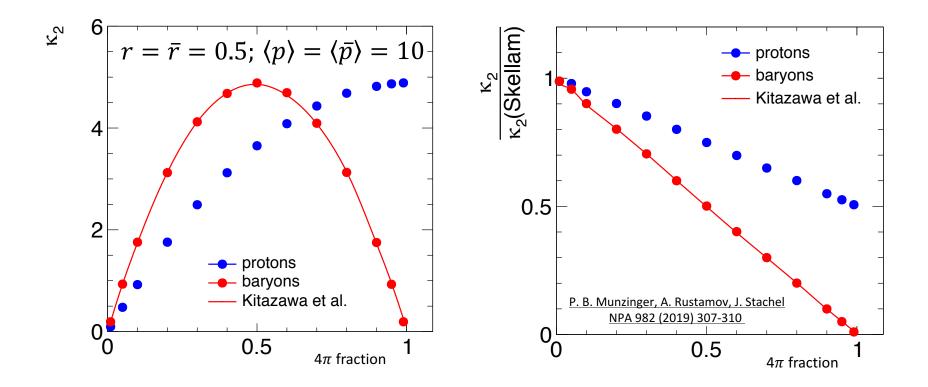
<u>A. Rustamov, M. Gazdzicki, M. I. Gorenstein, PRC 86, 044906 (2012), PRC 84, 024902 (2011)</u> <u>M. Arslandok, A. Rustamov, NIM A, 946, (2019), 162622</u>

QSEC, 26.09.2019

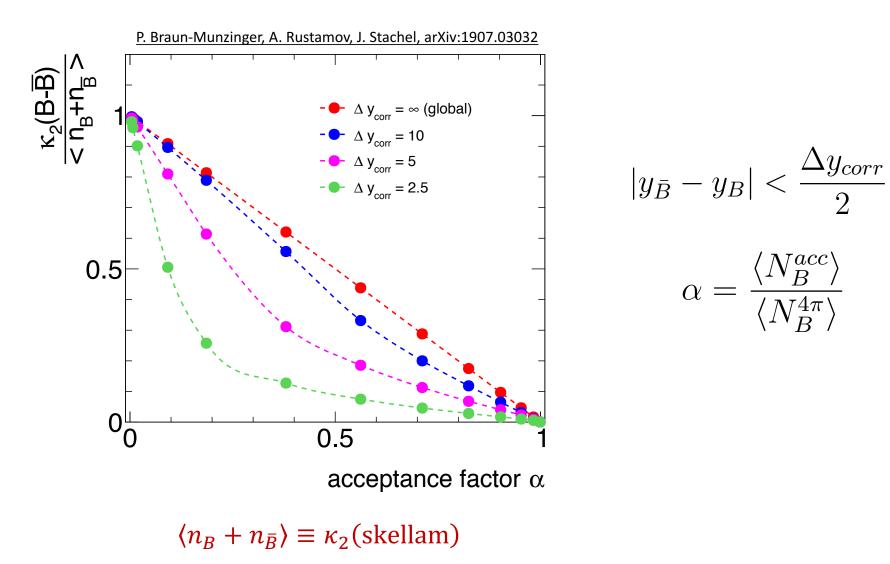
Mesut Arslandok, Heidelberg (PI)

Which acceptance?

> Due to **isospin randomization**, at $\sqrt{s_{NN}}$ > 10 GeV **net-baryon** fluctuations can be obtained from corresponding **net-proton** measurements (<u>M. Kitazawa, and M. Asakawa, Phys. Rev. C 86, 024904 (2012)</u>)



Global vs Local baryon number conservation

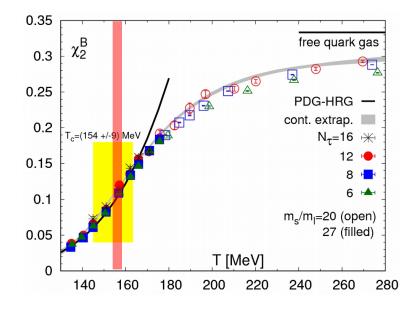


 $\alpha = \frac{\langle N_B^{acc} \rangle}{\langle N_{-}^{4\pi} \rangle}$

1st and 2nd order cumulants at LHC

LQCD expectations:

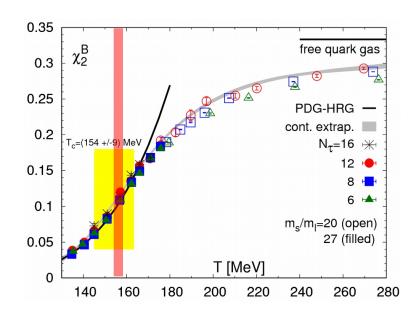
- ✓ 1st moments → $T_{pc} = T_{freeze-out} = ~ 156 \text{ MeV}$
- ✓ 2nd moments → No deviation from HRG at T_{pc}

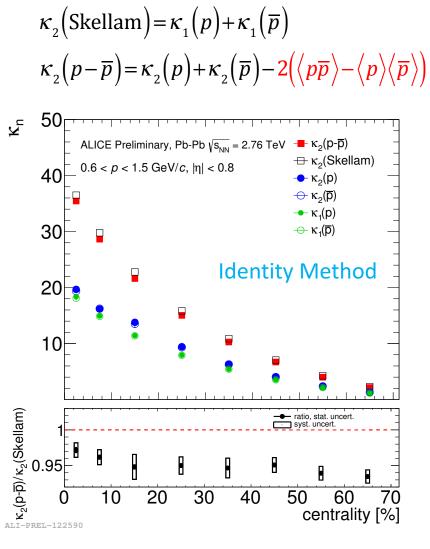


1st and 2nd order cumulants at LHC

LQCD expectations:

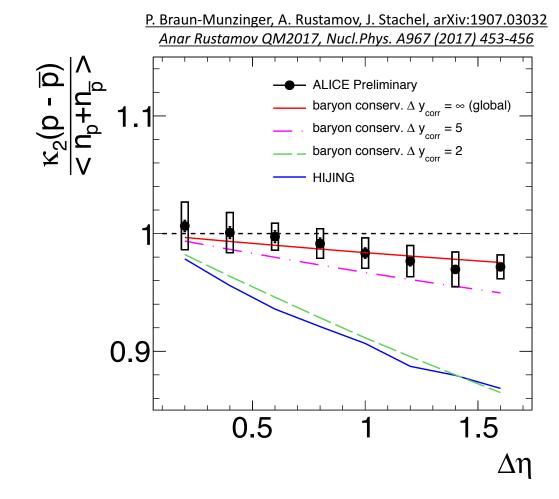
✓ 1st moments → $T_{pc} = T_{freeze-out} = ~ 156 \text{ MeV}$ ✓ 2nd moments → No deviation from HRG at T_{pc}





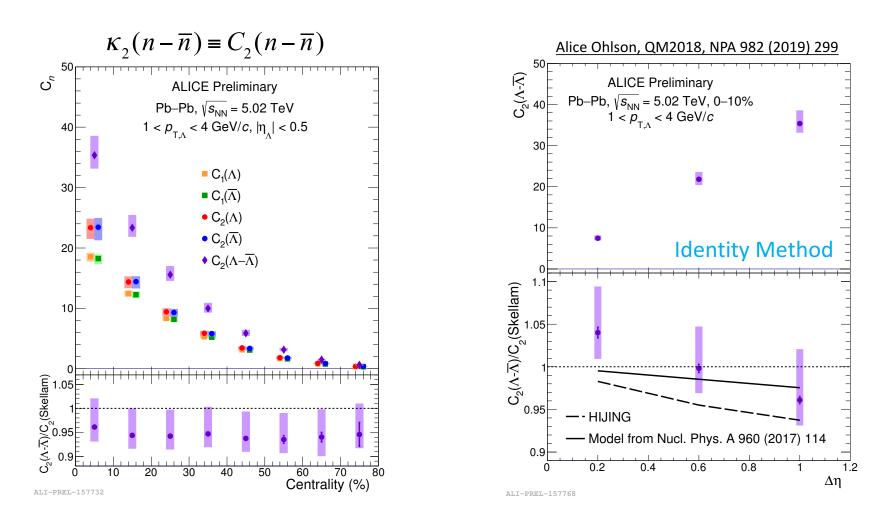
What is 3% deviation from baseline at most central collisions?

2nd order cumulants of net-p at LHC



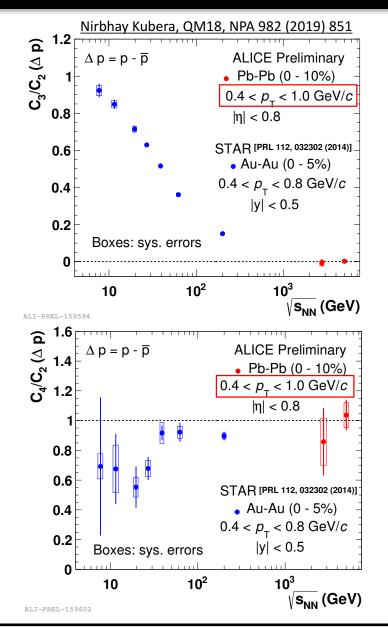
- ✓ **Data** is consistent with baryon number conservation over full solid angle
- Event generators based on string fragmentation (HIJING) conserve baryon number over a smaller interval

2^{nd} order cumulants of net- Λ at LHC

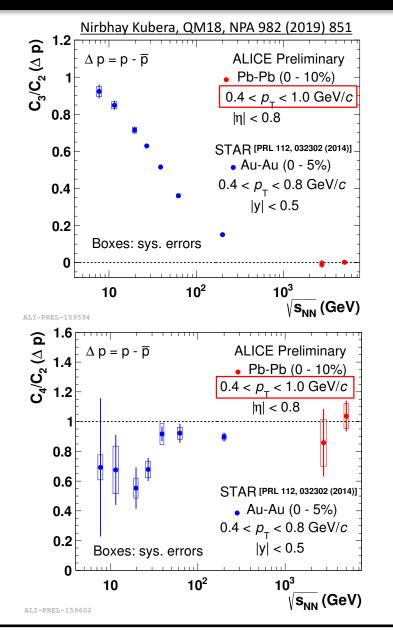


- Similar trend as for net-p
- > Better precision is needed to see the impact of strangeness conservation

3rd and 4th order cumulants of net-p at LHC



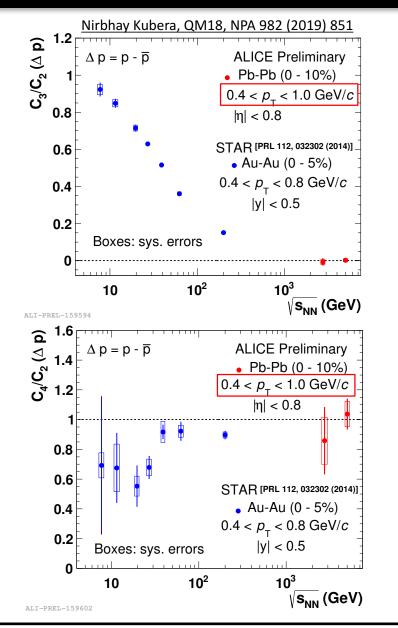
3rd and 4th order cumulants of net-p at LHC



 C_3/C_2 and C_4/C_2 agree with Skellam at LHC energies?

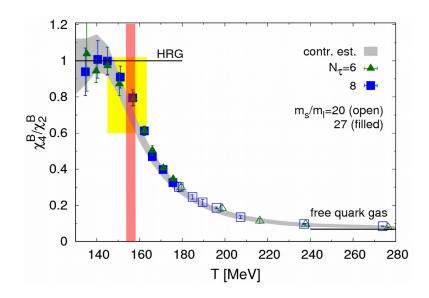
- Small acceptance
- Low statistics
- Cut-based approach for PID

3rd and 4th order cumulants of net-p at LHC



 C_3/C_2 and C_4/C_2 agree with Skellam at LHC energies?

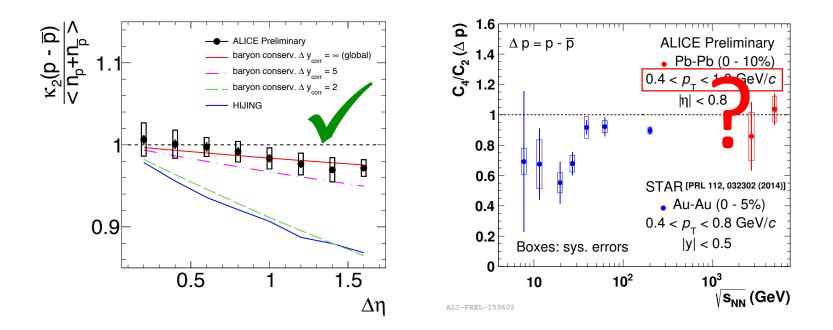
- Small acceptance
- Low statistics
- Cut-based approach for PID



Analysis within a larger kinematic acceptance using Identity Method is in progress

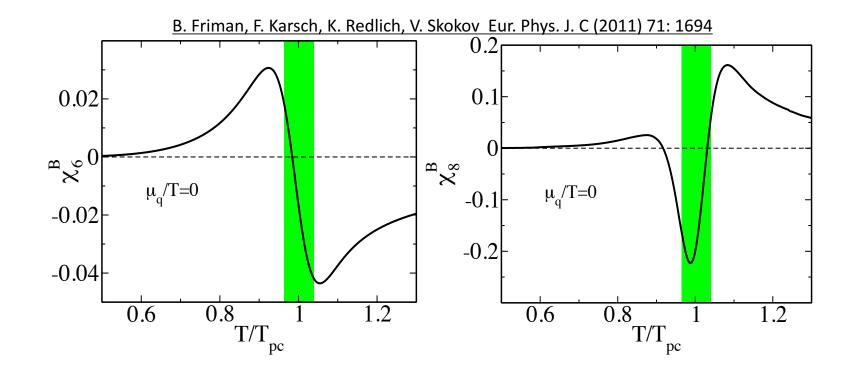
Summary

- ✓ Fluctuations are excellent tool to study QCD phase diagram
- Conserved charge fluctuations: Link to LQCD
 - 2nd second cumulants of net-protons after accounting for baryon number conservation, in agreement with the corresponding second cumulants of the Skellam distribution.
 - LQCD predicts a Skellam behavior for the second cumulants of net-baryons at $T_{pc} \approx 156$
- Contributions due to local baryon number conservation, at LHC energies, are small if present at all in the second cumulants of net-protons.
- Analysis of 3rd and 4th cumulants within a larger kinematic acceptance using Identity Method is ongoing



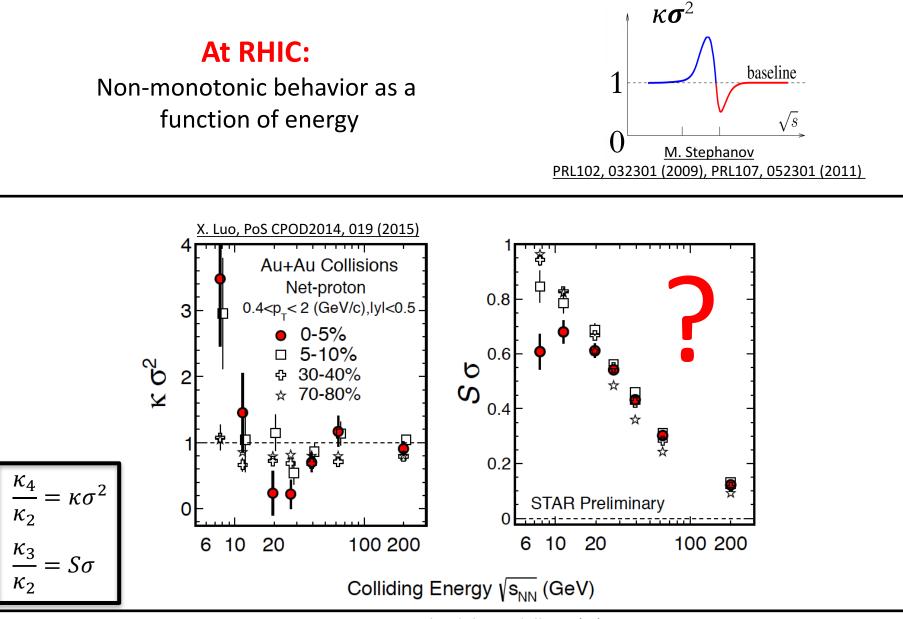
Outlook

Holy grail: see critical behavior in 6th and higher order cumulants → Stay tuned for the RUN3 period of the LHC



BACKUP

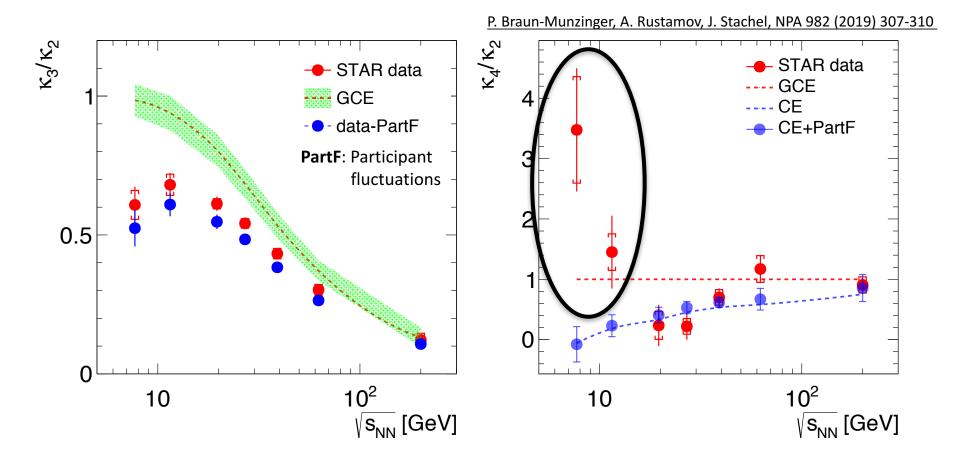
3rd and 4th order cumulants of net-p at RHIC



QSEC, 26.09.2019

Mesut Arslandok, Heidelberg (PI)

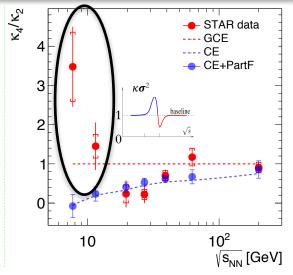
Effect of baryon number conservation



 $\succ \kappa_3/\kappa_2$ and κ_4/κ_2 cannot be simultaneously explained for the lowest two energies

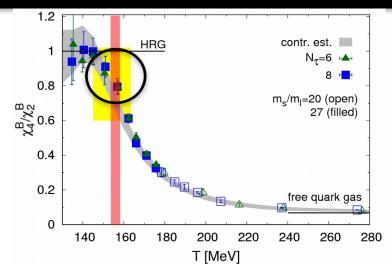
Possible biases due to efficiency correction procedure and cut based approach

Open Questions



Experiment

- Efficiency correction Ο \rightarrow realistic detector simulations
- Volume fluctuations 0 \rightarrow centrality resolution
- Effect of resonances Ο
- Measurement at low energies Ο
- Systematic uncertainties Ο
- . . .



Theory

- Efficiency correction Ο \rightarrow unfolding or ...
- Volume fluctuations Ο
- Effect of resonances Ο
- Measurement at low energies Ο
 - \rightarrow baryon stopping, deuteron formation ...
- Effect of hydrodynamic evolution Ο

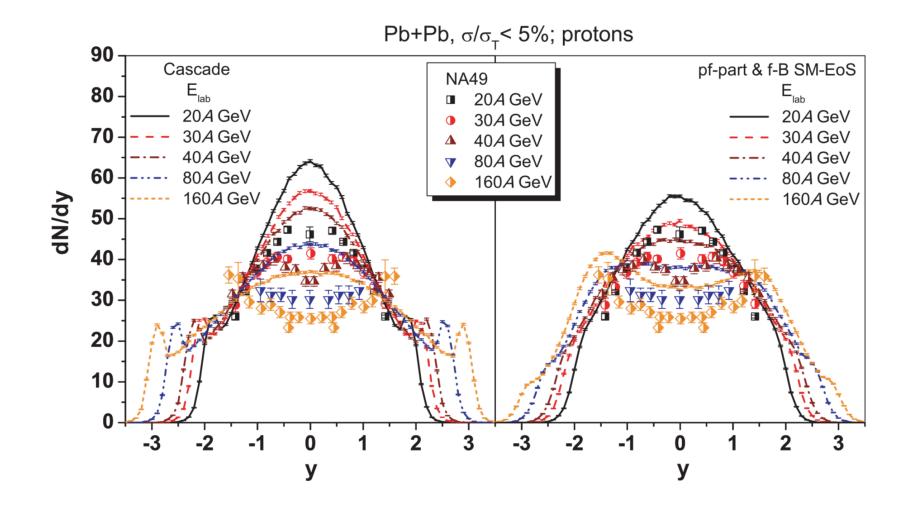
Ο

- Adam Bzdak et. al., arXiv:1906.00936

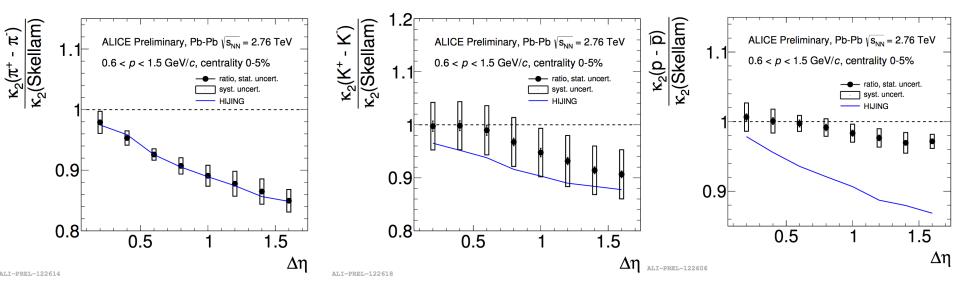
Probing the Phase Structure of Strongly Interacting Matter: Theory and Experiment, https://indico.gsi.de/event/7994/overview

Ο

Stopping

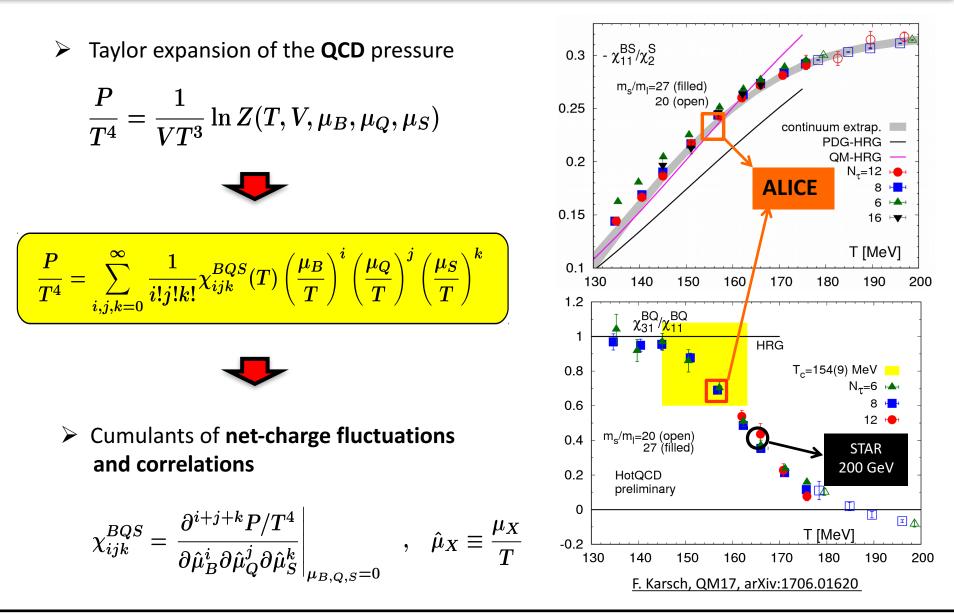


2^{nd} order cumulants of: π , K, p

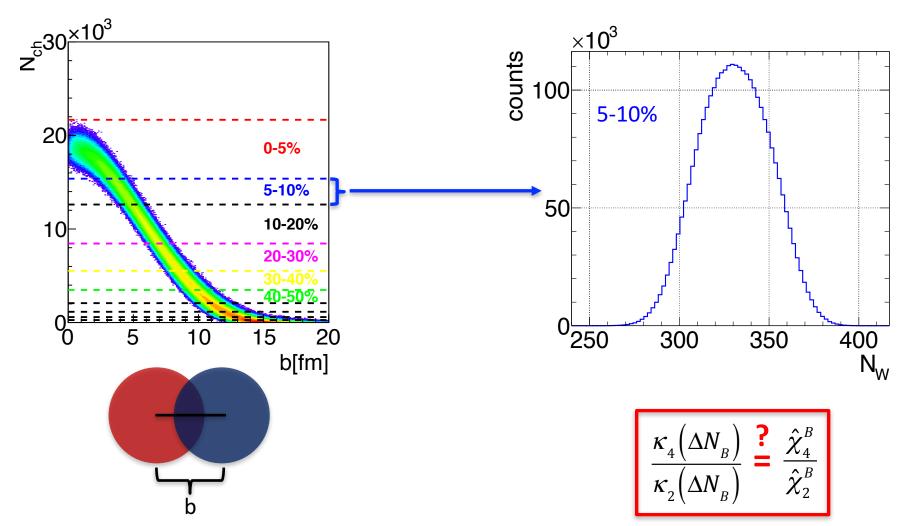


Effect of Resonances ?

Cross Cumulants



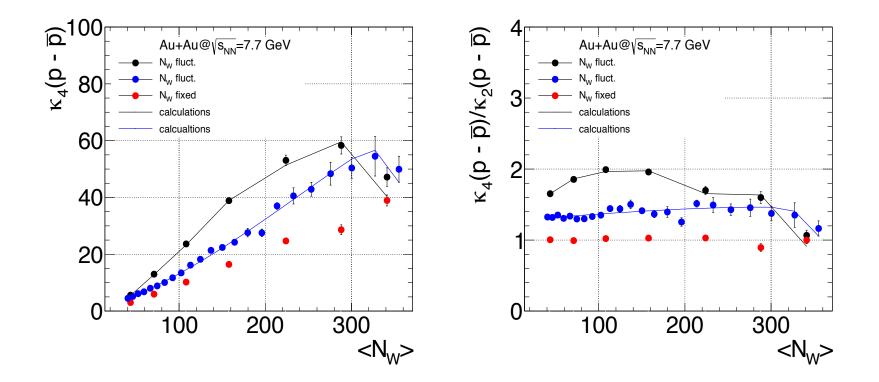
Volume Fluctuates



P. Braun-Munzinger, A. Rustamov, J. Stachel, Nuclear Physics A 960 (2017) 114–130

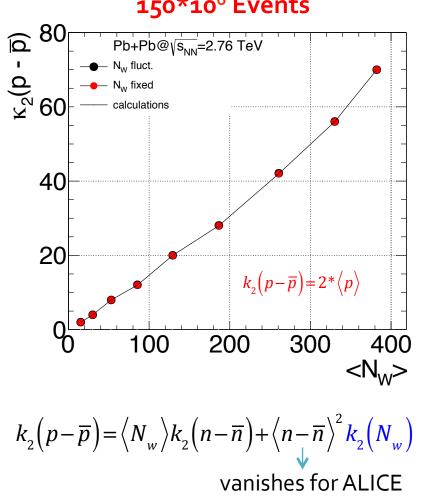
Mesut Arslandok, Heidelberg (PI)

Volume Fluctuations at RHIC energies



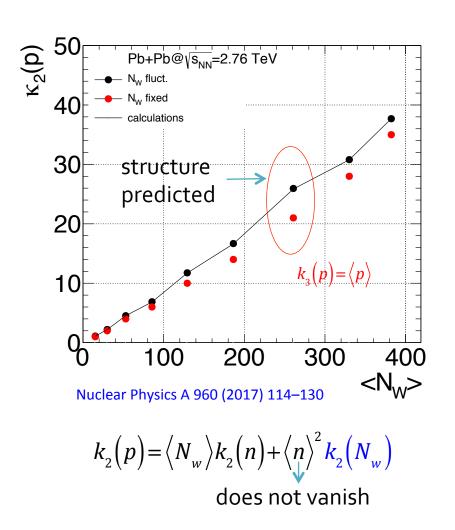
P. Braun-Munzinger, A. Rustamov, J. Stachel, Nuclear Physics A 960 (2017) 114–130

Volume Fluctuations: 2nd order

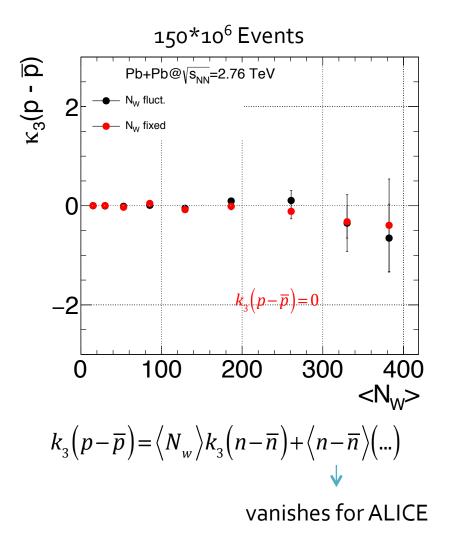


^{150*10&}lt;sup>6</sup> Events

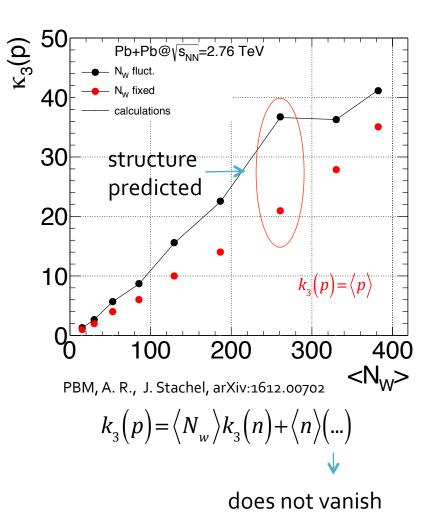
 n, \overline{n} from single wounded nucleon



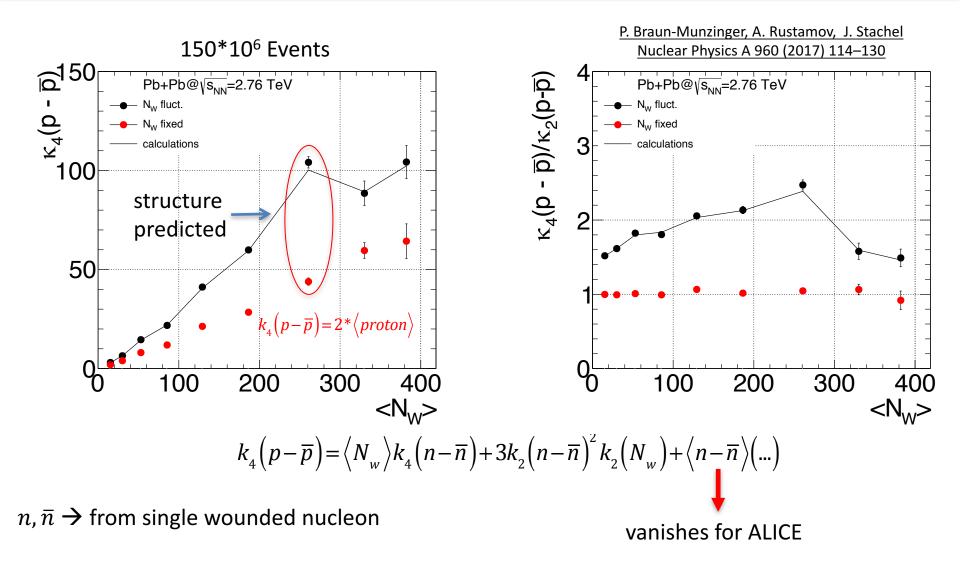
Volume Fluctuations: 3rd order



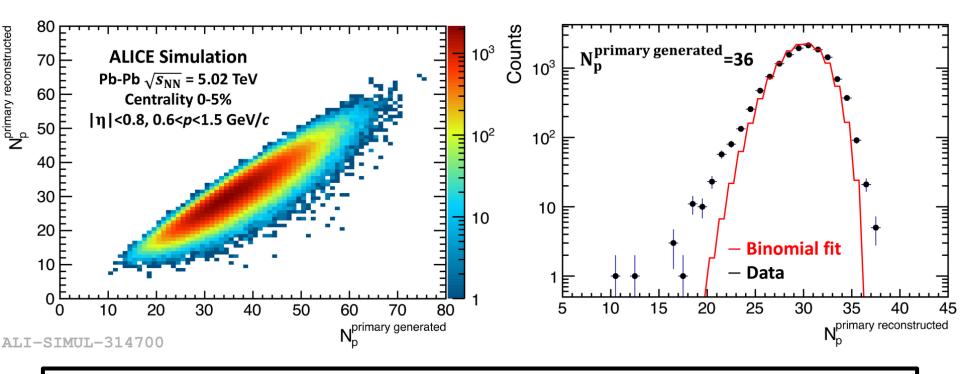
 n, \overline{n} from single wounded nucleon



Volume Fluctuations: 4th order



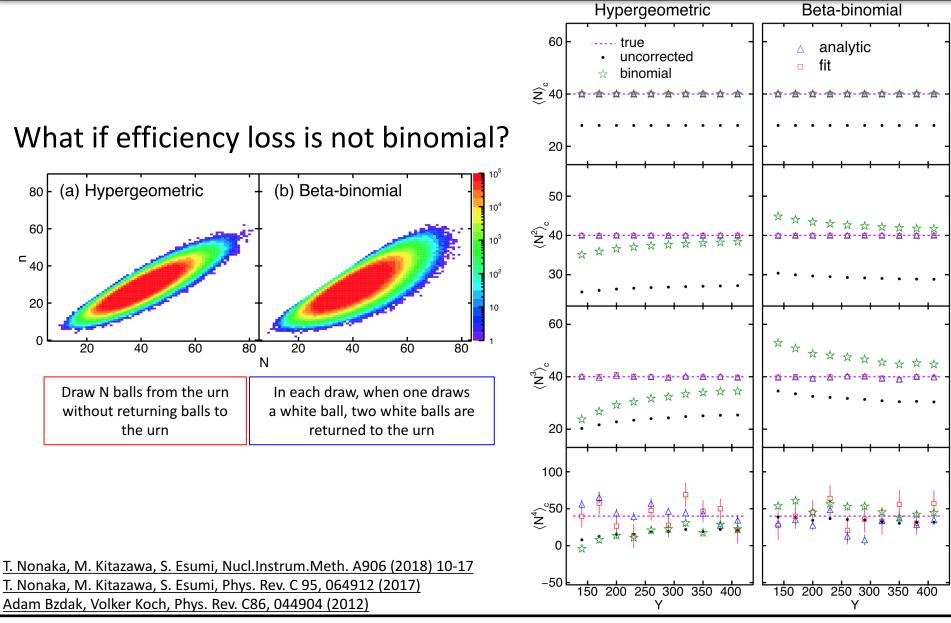
Is efficiency loss binomial in ALICE?



D Efficiency loss **deviates from binomial**

How does it influence the efficiency correction of higher order cumulants?

Efficiency correction



QSEC, 26.09.2019

Mesut Arslandok, Heidelberg (PI)

 \blacktriangleright Probability of measuring n_B baryons in the acceptance:

$$B(n_B; N_B, \alpha) = \frac{N_B!}{n_B! (N_B - n_B)!} \alpha^{n_B} (1 - \alpha)^{N_B - n_B} \qquad \alpha = \frac{\langle N_B^{acc} \rangle}{\langle N_B^{4\pi} \rangle}$$

Multiplicity distribution in the acceptance:

$$P(n_B) = \sum_{N_B} B(n_B; N_B, \alpha) P(N_B)$$

The moments of the measured baryon distributions can be then calculated

$$\langle n_B \rangle = \sum_{n_B=0}^{\infty} n_B P(n_B) = \alpha \langle N_B \rangle,$$

MC implementation of canonical ensemble

Two baryon species with the baryon numbers +1 and -1 in the ideal Boltzmann gas

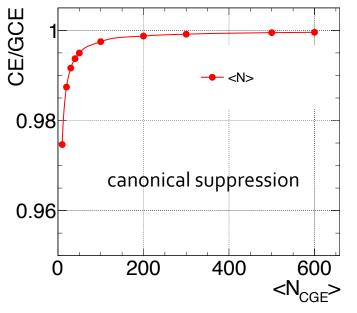
$$Z_{GCE}(V,T,\mu) = \sum_{N_B=0}^{\infty} \sum_{N_{\overline{B}}=0}^{\infty} \frac{\left(\lambda_B z\right)^{N_B}}{N_B!} \frac{\left(\lambda_{\overline{B}} z\right)^{N_{\overline{B}}}}{N_{\overline{B}}!} = e^{2z\cosh\left(\frac{\mu}{T}\right)}, \quad \lambda_{B,\overline{B}} = e^{\pm \frac{\mu}{T}}$$

$$Z_{CE}(V,T,B) = \sum_{N_B=0}^{\infty} \sum_{N_{\overline{B}}=0}^{\infty} \frac{\left(\lambda_B z\right)^{N_B}}{N_B!} \frac{\left(\lambda_{\overline{B}} z\right)^{N_{\overline{B}}}}{N_{\overline{B}}!} \delta\left(N_B - N_{\overline{B}} - B\right) = I_B\left(2z\right)\Big|_{\lambda_B=\lambda_{\overline{B}}=1}$$

$$\left\langle N_{B,\overline{B}}\right\rangle_{GCE} = \lambda_{B,\overline{B}} \frac{\partial \ln Z_{GCE}}{\partial \lambda_{B,\overline{B}}} = e^{\pm \frac{\mu}{T}} z, \quad z = \sqrt{\left\langle N_B \right\rangle_{GCE} \left\langle N_{\overline{B}} \right\rangle_{GCE}}$$

$$\left\langle N_{B,\overline{B}}\right\rangle_{CE} = \sqrt{\left\langle N_{B}\right\rangle_{GCE}} \left\langle N_{\overline{B}}\right\rangle_{GCE}} \frac{I_{B\mp 1} \left(2\sqrt{\left\langle N_{B}\right\rangle_{GCE}} \left\langle N_{\overline{B}}\right\rangle_{GCE}}\right)}{I_{B} \left(2\sqrt{\left\langle N_{B}\right\rangle_{GCE}} \left\langle N_{\overline{B}}\right\rangle_{GCE}}\right)}$$

R. Hagedorn, K. Redlich Z. Phys. 27, 1985 V.V. Begun, M. I. Gorenstein, O. S. Zozulya, PRC 72 (2005) 014902 P. Braun-Munzinger, B. Friman, F. Karsch, K. Redlich, V. Skokov, NPA 880 (2012) A. Bzdak, V. Koch, V. Skokov, PRC87 (2013) 014901



P. Braun-Munzinger, A. Rustamov, J. Stachel, NPA 982 (2019) 307-310

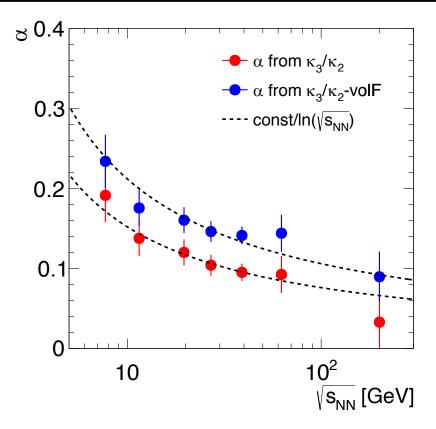
QSEC, 26.09.2019

Mesut Arslandok, Heidelberg (PI)

Results from STAR vs Our predictions

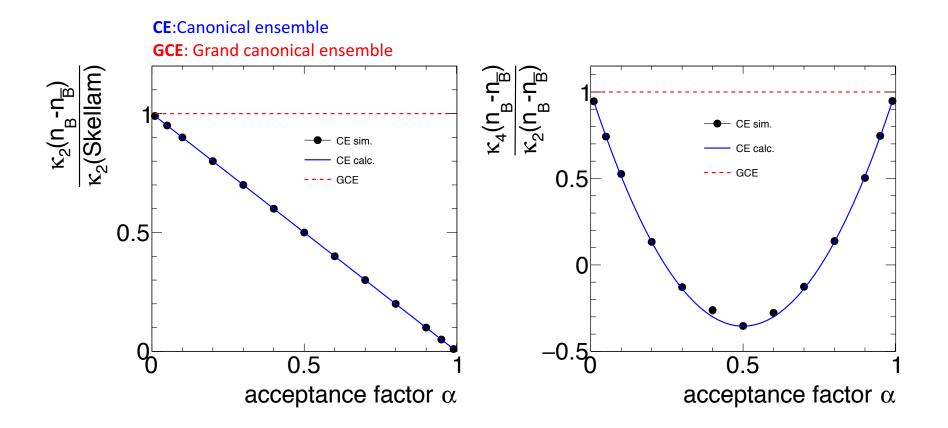
Acceptances: $\alpha_{\sqrt{s=7.7 GeV}} = 0.19 \pm 0.03$, $\alpha_{\sqrt{s=19.6 GeV}} = 0.12 \pm 0.016$

$$\frac{\kappa_{3}}{\kappa_{2}} = \frac{\left\langle n_{B} - n_{\overline{B}} \right\rangle_{CE}}{\left\langle n_{B} + n_{\overline{B}} \right\rangle_{CE}} \left(1 - 2\alpha\right), \quad \frac{\kappa_{4}}{\kappa_{2}} = 1 - 6\alpha \left(1 - \alpha\right) \left(1 - \frac{2}{\left\langle n_{B} + n_{\overline{B}} \right\rangle_{CE}} \left[\left\langle n_{B} \right\rangle_{GCE} \left\langle n_{\overline{B}} \right\rangle_{GCE} - \left\langle n_{B} \right\rangle_{CE} \left\langle n_{\overline{B}} \right\rangle_{CE}\right]\right)$$



P. Braun-Munzinger, A. Rustamov, J. Stachel, NPA 982 (2019) 307-310

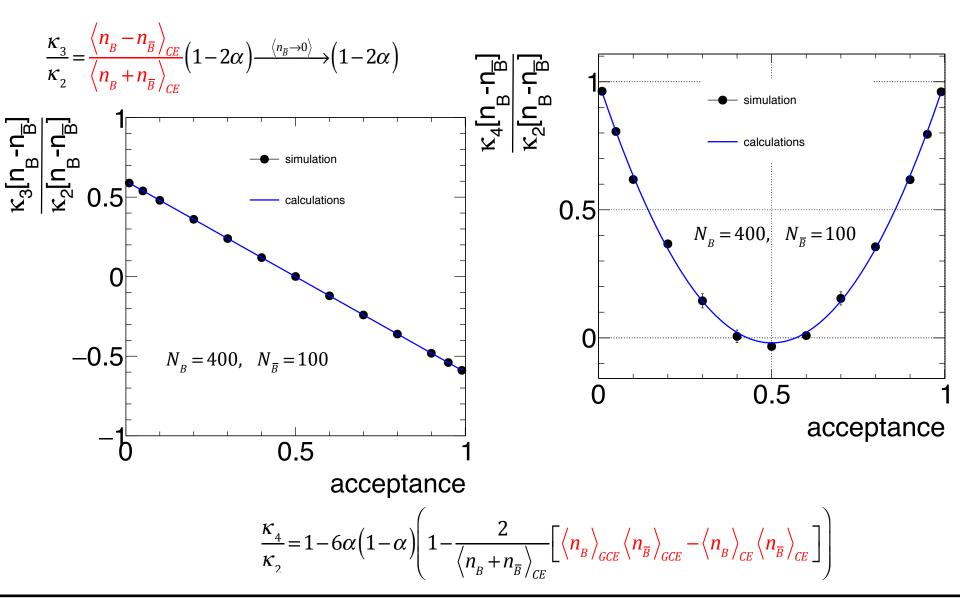
Effect of baryon number conservation at 4th order?



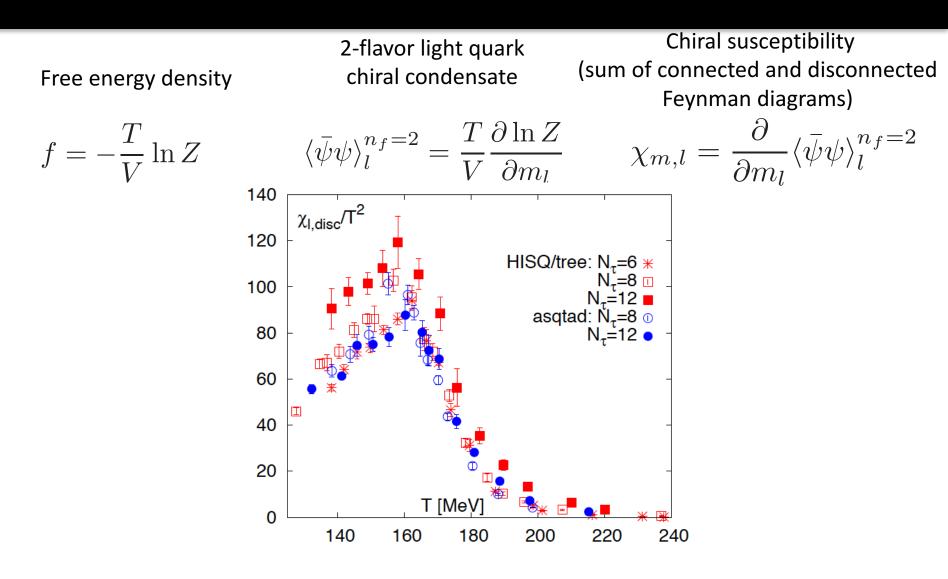
- Small acceptance → small multiplicities → approach to Poissonian limit
- Acceptance is more crucial for the 4th cumulant

P. Braun-Munzinger, A. Rustamov, J. Stachel, NPA 982 (2019) 307-310

3rd and 4th cumulants



Mesut Arslandok, Heidelberg (PI)



"The disconnected part of the light quark susceptibility describes the fluctuations in the light quark condensate"