

Observation of glassy dynamics in a disordered quantum spin system

QSEC Heidelberg

A05: Weidemueller / Whitlock / Gärttner

PHYSIKALISCHES INSTITUT

Gerhard Zürn

How do disorderd system relax

Universität Heidelberg

PHYSIKALISCHES

Т

INS

Slow dynamics:

 systems coupled to a bath: e.g. spin glasses

- open quantum systems: e.g. NV centers

coupling to environment averaged depolarization

Does such glassy dynamics also exist for isolated quantum systems ?

QSEC Heidelberg

J. Bouchaud, Journal de Physique I 2, 1705-1713 (1992) A. Hamman et al., J. Appl. Phys. 61 (1987) 3683 J. Choi et al., *PRL*, *118*, 93601 (2017)

Quantum spin system

ΙΝ S Τ Ι Τ

U

Few particle prediction

- Initial state: Spin aligned in xdirection:
- Calculate magnetization $\langle S_x
 angle$

pink: single realization orange: ensamble average

- Short time: quadratic Hamiltonian evolution
- Long time: slowdown of relaxation

dashed line: logarithm

Few particle prediction

- Initial state: Spin aligned in xdirection:
- Calculate magnetization $\langle S_x
 angle$

pink: single realization orange: ensamble average

- Short time: quadratic Hamiltonian evolution
- Long time: slowdown of relaxation

dashed line: logarithm

- Built up of entanglement

12 particles in 3D: dominated by finite size effects

\rightarrow Use Rydberg atom platform to study many-body dynamics

UNIVERSITÄT HEIDELBERG

Implementation:

- **Spin states:** 2 different Rydberg levels:

- Motional degree of freedom frozen

$$T = 40 \,\mu K$$

 $t_{
m exp} = 10 \,\mu s$ $\rightarrow \Delta r < 1 \,\mu m$
Typical distance: $\sim 10 \,\mu m$

- **Strong interaction**: timescale of coupling

$$\frac{1}{J_{ij}} \ll t_{\exp}$$

$$\begin{array}{c} \hline & r_{ij} \\ \hline & & \hline \\ J_{ij} = \frac{C_6}{r_{ij}^6} \\ \end{array}$$
 van der Waals interaction $C_6 \propto n^{11}$

$$J_{ij} \sim 1 \,\mathrm{MHz}$$

- **Disorder**: excite Rydberg atoms from a thermal distribution of ground state atoms

Atoms at short distance with 1/R⁶ interaction would dominate the dynamics

 \rightarrow Make use of a short distance cut-off

Universität Heidelberg

PHYSIKALISCHES INSTITUT

Lukin et al., PRL 87, 037901 (2001)

- Isolated system: perform Ramsey measurement

Ramsey measurement ($\Delta/2\pi$ = 0.47 MHz)

Universität Heidelberg

Heisenberg XXZ Hamiltonian

$$H = \sum_{i,j} J_{ij} \left(S_x^{(i)} S_x^{(j)} + S_y^{(i)} S_y^{(j)} + \delta S_z^{(i)} S_z^{(j)} \right)$$

 $\delta = -0.7$

- Isolated
- Disorderd
- $J_{ij,max} = 3 MHz$
- Number of spins ~ 1000

Quench – initial state

Perform a quench:
$$|\Psi_0\rangle = |\rightarrow\rangle_x^{\otimes N}$$
 $\xrightarrow{H_{XXZ}}$

Choice of state: no evolution under the classical equation of motion

$$\langle S_y^{(j)} \rangle = 0 \qquad \qquad H_{\text{mean}} = \sum_i \underbrace{h_x^{(i)}}_{\sum_j J_{ij} \langle S_x^{(j)} \rangle} S_x^{(i)}$$

PHYSIKALISCHES INSTITUT

Quench protocol - readout

Universität Heidelberg

$$|\Psi(t)\rangle = \mathrm{e}^{-i\hat{H}_{\mathrm{XXZ}}t}|\Psi_0\rangle$$

QSEC Heidelberg

PHYSIKALISCHES

Quantifying slow dynamics

Universität Heidelberg

$$M_{\beta}(t) \propto \exp\left(-(\gamma_J t)^{\beta}\right)$$

- Phenomenological fit inspired from Spin glasses
- Stretched exponent β characterizes relaxation:
 - $\beta \rightarrow 1$: Exponential decay
 - $\beta \rightarrow 0$: Logarithmic decay

 $\begin{array}{c}
0.5 \\
0.4 \\
\hline \\
S^{n} \\
0.3 \\
\hline \\
S^{n} \\
0.2 \\
0.1 \\
0.0 \\
10^{0} \\
10^{0} \\
10^{1} \\
time [\mu s]
\end{array}$

Experimental fit: $\beta = 0.32(2)$ \rightarrow glassy dynamics

PHYSIKALISCHES

INS

How does it depend on the strength of disorder ?

Tuning disorder strength

ΙΝ S Τ

Rescaling

PHYSIKALISCHES

INST

rescale time by characteristic energy $J = C_6/a_0^6$

 \rightarrow Universal behaviour independent of microscopic details

Further decrease disorder

Experiment: non-blockaded region in the Gaussian wings

→ Use numerical Method: discrete truncated Wigner approximation (dTWA)

Sample phase points of each spin according to the Wigner distribution

Compute classical time evolution ensamble average

PHYSIKALISCHES

QSEC Heidelberg

J. Schachenmayer, A. Pikovski, A. M. Rey, PRX 5, 11022 (2015)

- Semiclassical dTWA agrees well with experiment
 - \rightarrow use to study homogeneous spin distribution with disorder

QSEC Heidelberg

PHYSIKALISCHES INSTITUT

Quantifying disorder

Universität Heidelberg

Kullback Leibler divergence

p(J): actual probability distribution functionq(J): probability distribution function for an ideal gas

dTWA: Time evolution

rescaling with characteristics energy

> Reduced distance: $\tilde{a} = \text{median} \left(\sum_{i} \frac{C_6}{r_{ij}^6} \right)^{-\frac{1}{6}}$

PHYSIKALISCHES

INST

dTWA: Time evolution

Universität Heidelberg

QSEC Heidelberg

PHYSIKALISCHES INSTITUT

dTWA: range of universal behaviour

Universität Heidelberg

Two regimes identified

- Universal $\beta = 0.36$
- Relaxation rate $\frac{C_6}{\tilde{a}^6}$

Weakly disordered $\mathcal{D}_{KL} \gtrsim 1$

 β, γ_J depend on microscopic parameters

What determines the value of β =0.36 ?

- average over exponential decays leads to β=0.5
- For Ising Hamiltonian ($\delta >>1$) $\beta=1/2$

Does the system reach thermal equilbrium ?

Glassy dynamics: can take infinite time to reach zero magnetization

Break the symmetry of the Hamiltonian

$$H = H_{XXZ} - \Omega \sum_{i} S_x^{(i)}$$

ETH: Diagonal ensamble = thermodynamical ensamble ?

features similar to the diagonal ensamble

Out of time order correlations \rightarrow Martin Gärttner

QSEC Heidelberg R. Mukherjee, T. C. Killian, K. R. A. Hazzard, PRA 94, 053422 (2016)

Summary

- **Glassy dynamics** independent of microscopic details

QSEC Heidelberg

Range of slow dynamics

PHYSIKALISCHES

The Team

Shannon Whitlock

Adrien Signoles

Martin Gärttner

back: Renato Ferracini Alves, A.T., Nithiwadee Thaicharoen, Sebastian Geier, Gerhard Zürn front: Alexander Müller, Clément Heineut, Titue Franz, Henrik Zehn, The Pabbit

front: Alexander Müller, Clément Hainaut, Titus Franz, Henrik Zahn, The Rabbit, André Salzinger, Charles Möhl, Matthias Weidemüller

Thank you for your attention!

PHYSIKALISCHES INSTITUT