

Ab initio few-mode theory for quantum potential scattering problems

Dominik Lentrodt, Kilian P. Heeg, Christoph H. Keitel and Jörg Evers

Max-Planck-Institut für Kernphysik, Heidelberg

JUST TO CLEAR THINGS UP:	
A FEW	ANYWHERE FROM 2 TO 5
A HANDFUL	ANYWHERE FROM 2 TO 5
SEVERAL	ANYWHERE FROM 2 TO 5
A COUPLE.	2 (BUT SOMETIMES UP TO 5)

https://xkcd.com/1070/

Other motivations: metrology...

Extreme regimes

 \Rightarrow New theoretical challenges

Overview

Continuum coupling

Structured continuum featuring resonances

cavity/potential

How to extract relevant degrees of freedom from a continuum?

Structured continuum featuring resonances

 \rightarrow Weak coupling: Purcell effect

 \rightarrow Strong coupling: Vacuum Rabi-splitting

 \Rightarrow Quantum effects via strong light-matter interactions!

The problem

Extreme regimes

Multi-mode strong coupling

Türeci et al. *Science* **320**, 643 (2008) Krimer et al. *Phys. Rev. A* **89**, 033820 (2014) Sundaresan et al. *Phys. Rev. X* **5**, 021035 (2015) ...and many more ...

QSEC 2019, Heidelberg

- Multi-mode strong coupling
- Ultra-strong coupling
- Deep-strong coupling

Recent reviews:

Carusotto & Ciuti Rev. Mod. Phys. **85**, 299 (2013) Frisk Kockum et al. Nat. Rev. Phys. **1**, 19 (2019) Forn-Díaz et al. Rev. Mod. Phys. **91**, 025005 (2019) Experimental: Niemczyk et al. Nat. Phys. **6**, 772 (2010) ...and many more...

- Multi-mode strong coupling
- Ultra-strong coupling
- Deep-strong coupling
- Overlapping modes

Petermann IEEE J. Quantum Electron. 15, 566 (1979) Hackenbroich, Viviescas & Haake Phys. Rev. Lett. 89, 083902 (2002) I. Rotter J. Phys. A: Mathematical and Theoretical 45, 15 (2009) Heeg et al. Phys. Rev. Lett. 114, 207401 (2015) ...and many more...

- Multi-mode strong coupling
- Ultra-strong coupling
- Deep-strong coupling
- Overlapping modes
- Large leakage

Experimentally relevant:

Altewischer et al. Nature **418**, 304306 (2002) Savage et al. Nature **491**, 574577 (2012) Esteban et al. Nat. Comm. **3**, 825 (2012) Tame et al. Nat. Phys. **9**, 329340 (2013) ... and many more...

Extreme coupling

- Multi-mode strong coupling
- Ultra-strong coupling
- Deep-strong coupling
- Overlapping modes
- Large leakage

Extreme openness

Experimentally relevant:

Altewischer et al. Nature **418**, 304306 (2002) Savage et al. Nature **491**, 574577 (2012) Esteban et al. Nat. Comm. **3**, 825 (2012) Tame et al. Nat. Phys. **9**, 329340 (2013) ...and many more...

Ć

Jaynes-Cummings & friends $H = H_{\text{atom}} + H_{\text{cav}} + g\hat{a}\hat{\sigma}^+ + h.c.$

 \rightarrow few-mode concept

Jaynes-Cummings & friends $H = H_{\text{atom}} + H_{\text{cav}} + g\hat{a}\hat{\sigma}^+ + h.c.$

 \rightarrow few-mode concept

Ab initio few-mode theo

From closed to open boxes

Phenomenological few-mode theory

Jaynes-Cummings & friends $H = H_{\text{atom}} + H_{\text{cav}} + g\hat{a}\hat{\sigma}^+ + h.c.$

Phenomenological few-mode theory

Jaynes-Cummings & friends $H = H_{\text{atom}} + H_{\text{cav}} + g\hat{a}\hat{\sigma}^+ + h.c.$

Phenomenological few-mode theory

Jaynes-Cummings & friends $H = H_{\text{atom}} + H_{\text{cav}} + g\hat{a}\hat{\sigma}^+ + h.c.$ **System-bath Hamiltonian** $H_{\text{cav}} = H_{\text{syst}} + H_{\text{bath}} + \mathcal{W}\hat{a}\hat{b}^{\dagger} + h.c.$

Phenomenological few-mode theory

Jaynes-Cummings & friends $H = H_{atom} + H_{cav} + g\hat{a}\hat{\sigma}^+ + h.c.$ **System-bath Hamiltonian** $H_{\text{cav}} = H_{\text{syst}} + H_{\text{bath}} + \mathcal{W}\hat{a}\hat{b}^{\dagger} + h.c.$

> Input-output theory $\hat{b}_{out} = \hat{b}_{in} + \kappa \hat{a}$

Phenomenological few-mode theory

Jaynes-Cummings & friends $H = H_{\text{atom}} + H_{\text{cav}} + g\hat{a}\hat{\sigma}^+ + h.c.$ **System-bath Hamiltonian** $H_{\text{cav}} = H_{\text{syst}} + H_{\text{bath}} + \mathcal{W}\hat{a}\hat{b}^{\dagger} + h.c.$

Input-output theory $\hat{b}_{out} = \hat{b}_{in} + \kappa \hat{a}$

\rightarrow few-mode concept

 \rightarrow scattering

 \Rightarrow Big tool box for quantum dynamics!

The problem

C

The problem

Ć

The problem

 \Rightarrow Ab initio few-mode theory

Ć

Glauber & Lewenstein, *Phys. Rev. A* **43**, 467 (1991) Gardiner & Collett, *Phys. Rev. A* **31**, 3761 (1985)

¹Viviescas & Hackenbroich, *Phys. Rev. A* 67, 013805 (2003)
²Domcke, *Phys. Rev. A* 28, 2777 (1982)
³DL & J. Evers, arXiv:1812.08556 [quant-ph]

 \Rightarrow select resonant states as few-mode basis³

¹Viviescas & Hackenbroich, *Phys. Rev. A* **67**, 013805 (2003) ²Domcke, *Phys. Rev. A* **28**, 2777 (1982) ³DL & J. Evers, arXiv:1812.08556 [quant-ph]

 \Rightarrow select resonant states as few-mode basis³

 \Rightarrow ab initio few-mode Hamiltonians \bigcirc ³

¹Viviescas & Hackenbroich, *Phys. Rev. A* **67**, 013805 (2003) ²Domcke, *Phys. Rev. A* **28**, 2777 (1982) ³DL & J. Evers, arXiv:1812.08556 [quant-ph]

QSEC 2019, Heidelberg

C

DL & J. Evers, arXiv:1812.08556 [quant-ph] QSEC 2019, Heidelberg

Ć

DL & J. Evers, arXiv:1812.08556 [quant-ph]

Ć

DL & J. Evers, arXiv:1812.08556 [quant-ph]

DL & J. Evers, arXiv:1812.08556 [quant-ph]

DL & J. Evers, arXiv:1812.08556 [guant-ph]

 \Rightarrow Few-mode theory can apply in extreme regimes!

DL & J. Evers, arXiv:1812.08556 [guant-ph]

Illustrative example

Œ

QSEC 2019, Heidelberg

Ley & Loudon J. Mod. Opt. 34, 227-255 (1987)

C

C

DL & J. Evers, arXiv:1812.08556 [quant-ph]

Ć

QSEC 2019, Heidelberg

Interacting systems

Interacting systems

- Many degrees of freedom
- Often difficult!

Interacting systems

- Many degrees of freedom
- Often difficult!

- Much easier to solve!
- Many methods already exist!^{1,2,3}
- Advantages to phenomenological version!

¹ Carmichael, Statistical Methods in Quantum Optics 1(1999) ² Gardiner & Zoller Quantum Noise (1999)

³ Kirton et al. Adv. Quantum Technol. 2, 1800043 (2019)

Recipe:

- 1. choose few-mode basis
- 2. perform few-mode approximation in interaction
- 3. include more modes if necessary
- \Rightarrow Non-perturbative expansion scheme

DL & J. Evers, arXiv:1812.08556 [quant-ph]

QSEC 2019, Heidelberg

Recipe:

- 1. choose few-mode basis
- 2. perform few-mode approximation in interaction
- 3. include more modes if necessary

Non-perturbative expansion scheme

DL & J. Evers, arXiv:1812.08556 [quant-ph]

QSEC 2019, Heidelberg

Recipe:

- 1. choose few-mode basis
- 2. perform few-mode approximation in interaction
- 3. include more modes if necessary

 \Rightarrow Non-perturbative expansion scheme

DL & J. Evers, arXiv:1812.08556 [quant-ph] QSEC 2019, Heidelberg

Recipe:

- 1. choose few-mode basis
- 2. perform few-mode approximation in interaction
- 3. include more modes if necessary

 \Rightarrow Non-perturbative expansion scheme

Advantages of ab initio few-mode theory

- Non-interacting part treated *exactly*
- Disentangles approximations
- Connects to existing toolbox

DL & J. Evers, arXiv:1812.08556 [quant-ph]

Recipe:

- 1. choose few-mode basis
- 2. perform few-mode approximation in interaction
- 3. include more modes if necessary

 \Rightarrow Non-perturbative expansion scheme

Advantages of ab initio few-mode theory

- Non-interacting part treated *exactly*
- Disentangles approximations
- Connects to existing toolbox
- \Rightarrow Applies in extreme regimes!

DL & J. Evers, arXiv:1812.08556 [quant-ph]

Convergence and extreme regimes

DL & J. Evers, arXiv:1812.08556 [quant-ph]

Œ

Convergence and extreme regimes

Convergence of light-matter coupling models is non-trivial!¹

¹ e.g. Krimer et al. Phys. Rev. A **89**, 033820 (2014)
Malekakhlagh, Petrescu, Türeci Phys. Rev. Lett. **119**, 073601 (2017)
Gely et al. Phys. Rev. B **95**, 245115 (2017)

DL & J. Evers, arXiv:1812.08556 [quant-ph]

Convergence and extreme regimes

Convergence can also be shown analytically!

Convergence of light-matter coupling models is non-trivial!¹

e.g. Krimer et al. Phys. Rev. A 89, 033820 (2014)
Malekakhlagh, Petrescu, Türeci Phys. Rev. Lett. 119, 073601 (2017)
Gely et al. Phys. Rev. B 95, 245115 (2017)

DL & J. Evers, arXiv:1812.08556 [quant-ph]

Benchmarks and more advantages

✓ Benchmarked in linear regime✓ Highly open systems

Benchmarks and more advantages

- ✓ Benchmarked in linear regime✓ Highly open systems
- ✓ Non-linear effects

Benchmarks and more advantages

- ✓ Benchmarked in linear regime✓ Highly open systems
- Non-linear effects
- ✓ Overlapping modes features
 - \Rightarrow Non-trivial bath effects!

✓ Ab initio calculation of quantum couplings

.....

 $\kappa_{\text{stom}}^{(T)}$ [L⁻¹]

 $\Delta_{1.8} [L^{-1}]$

.....

 $\times 10^{-1}$

 $\gamma_8 [L^{-1}]$

- 1S

 $---- \Delta_{LS}$

30

2.0 F 0 1 Full transmissivity

29.68 29.70 $\omega [L^{-1}]$

> 29 $\omega [L^{-1}]^{\omega_0}$

a $n_{mid} = 2.7$ (isolated resonances)

29.72 28.5

28

Input-output

 $\omega [L^{-1}]$ 29.0

 \mathbf{b} $n_{mid} = 7.0$ (avoided crossing)

Background

 $n_{\rm mid}$ =15.0 (merging lines)

Benchmarks and more advantages

- ✓ Benchmarked in linear regime✓ Highly open systems
- Non-linear effects
- ✓ Overlapping modes features
 - \Rightarrow Non-trivial bath effects!

✓ Ab initio calculation of quantum couplings

From strong coupling to free space

DL & J. Evers, arXiv:1812.08556 [quant-ph]

C

Conclusion

- ✓ Rigorous construction of few-mode Hamiltonians
- $\checkmark\,$ Exact scattering theory via input-output formalism
- $\checkmark\,$ Non-perturbative expansion scheme for interactions
- $\checkmark\,$ Linking ab initio theory and models in cavity QED
 - \Rightarrow Access to new regimes!
- !! Explore quantum effects in X-ray cavities
- ?! Applications in extreme regimes of open quantum dynamics

Thank you for your attention!

