Chirality, Helicity,
 Anomaly in High-Energy Nuclear Physics

monmon

Kenji Fukushima

The University of Tokyo
— Quantum Systems in Extreme Conditions (QSEC2019)

Formal:

Anomaly

=

Phase Ambiguity in the Partition Func.

Very powerful theoretical tool

Formal:

Anomaly

=
Phase Ambiguity in the Partition Func.
Very powerful theoretical tool

Practical:

Something counterintuitive?

Very interesting phenomena

Falling Cat Problem

[Wikipedia]

Falling Cat Problem

Cats can survive picking up a geometrical phase

For further reading:
"Gauge kinematics of deformable bodies" by A. Shapere, F. Wilczek American Journal of Physics (1989)

Berry Phase

Larmor precession of spin

$$
\frac{\partial \boldsymbol{S}}{\partial t}=\frac{e}{m_{e}} \boldsymbol{B} \times \boldsymbol{S}
$$

How to derive this? \leftarrow Commutator

$$
\begin{gathered}
{\left[\hat{S}^{i}, \hat{S}^{j}\right]=i \epsilon^{i j k} S^{k}} \\
\text { Quantum Physics }
\end{gathered}
$$

Berry Phase

Larmor precession of spin

$$
\frac{\partial \boldsymbol{S}}{\partial t}=\frac{e}{m_{e}} \boldsymbol{B} \times \boldsymbol{S}
$$

How to derive this classically? (Euler-Lagrange eq.) Lagrangian is needed for the path integral!

$$
L=\underset{\text { Geometrical (Berry) Phase }}{-S \dot{\phi}(\cos \theta-1)}+\frac{e}{m_{e}} \boldsymbol{B} \cdot \boldsymbol{S}
$$

Berry Phase

$$
L=\underset{\text { Geometrical (Berry) Phase }}{-S \dot{\phi}(\cos \theta-1)}+\frac{e}{m_{e}} \boldsymbol{B} \cdot \boldsymbol{S}
$$

Dirac monopole

Berry Phase in High-Energy QCD

Side Remark

In the Color Glass Condensate (Talk by Venugopalan) the color source is "classical" (dense).

Going to a quantum (dilute) regime, one should take account of the commutator:

$$
\left[\hat{\rho}^{a}\left(x^{+}, \vec{x}\right), \hat{\rho}^{b}\left(x^{+}, \vec{y}\right)\right]=-i g f^{a b c} \hat{\rho}^{c}\left(x^{+}, \vec{x}\right) \delta^{(3)}(\vec{x}-\vec{y})
$$

This is compactly formulated with a Berry phase "In pursuit of Pomeron loops: The JIMWLK equation and the Wess-Zumino term" by A. Kovner and M. Lublinsky

Another Example of Geometrical Inv.

Linkage Number

Another Example of Geometrical Inv.

Linkage Number

Magnetic Flux

Another Example of Geometrical Inv.

Linkage Number

Magnetic Helicity

Another Example of Geometrical Inv.

What happens?

Possible with matter

Another Example of Geometrical Inv.

What happens?

This question was addressed in
"Quantized chiral magnetic current from reconnection of magnetic flux" by Hirono, Kharzeev, Yin (2016)

September 27, 2019 @ QSEC2019, Heidelberg

Anomaly Relation

Conservation Law (Talk by Schlichting)

"Chirality"

Anomaly Relation

Pseudo-conserved Current (Chern-Simons)

$$
\begin{aligned}
& \boldsymbol{E} \cdot \boldsymbol{B}=\partial_{\mu} K^{\mu} \\
& =\frac{d}{d t}\left(\underline{\boldsymbol{A} \cdot \boldsymbol{B})}+\nabla \cdot\left(A_{0} \boldsymbol{B}+\boldsymbol{E} \times \boldsymbol{A}\right)\right.
\end{aligned}
$$

Magnetic Helicity
Optical Angular Momentum

\pm
j_{5}^{0} Chirality of matter $\quad \boldsymbol{j}_{5}$ Spin of matter
in of matter

Angular Momentum Decomposition

Side Remark

- proton spin problem (gluon helicity)
- rotating quark-gluon plasma (Λ polarization)
- laser physics (discussions by S. Barnett)

$$
\begin{aligned}
\boldsymbol{L} & =\int d^{3} x E^{i}(\boldsymbol{x} \times \nabla) A^{i} & L^{g} \\
\boldsymbol{S} & =\int d^{3} x \boldsymbol{E} \times \boldsymbol{A} & \Delta G
\end{aligned}
$$

Jaffe-Manohar decomp.
"The photon angular momentum controversy: Resolution of a conflict between laser optics and particle physics" by E. Leader (2016) A pedagogical review (next month) by Fukushima-Pu

Chirality

Chirality of Oldies

Mirror image (enantiomer) not identical \leftarrow Old definition!
L.D. Barron : True and False Chirality

September 27,2019@ QSEC2019, Heidelberg

Chirality

Chirality of Today's Chemistry

L.D. Barron : True and False Chirality

spinning cones
(a)

True chirality is exhibited by systems existing in two distinct enantiomeric states that are interconverted by space inversion, but not by time reversal combined with any proper spatial rotation.

Laurence D. Barron
"An Introduction to Chirality at the Nanoscale"

Chirality

Chirality of Today's Chemistry

L.D. Barron : True and False Chirality

translating spinning cones

collinear E and $B=$ False Chirality

September 27,2019@ QSEC2019, Heidelberg

Chirality

Side Remark

$\boldsymbol{E} \cdot \boldsymbol{B} \neq 0 \quad$ This is not "chiral"

What is "chiral"? \leftarrow Lipkin's Zilch

$$
\chi=\frac{1}{2} \int d^{3} x\left(\boldsymbol{B} \cdot \partial_{t} \boldsymbol{E}-\boldsymbol{E} \cdot \partial_{t} \boldsymbol{B}\right)
$$

See: "Zilch vortical effect" by Chernodub, Cortijo, Landsteiner (2018)

Chirality

Helicity (massless theory)

$$
\boldsymbol{s} \cdot \hat{\boldsymbol{p}}=+\frac{1}{2} \quad \boldsymbol{s} \cdot \hat{\boldsymbol{p}}=-\frac{1}{2}
$$

Chiral Kinetic Theory (CKT)

Boltzmann (Vlasov) equation with spin effects

$$
\begin{gathered}
(1+\boldsymbol{B} \cdot \boldsymbol{\Omega}) \frac{\partial f}{\partial t}+\left[\boldsymbol{v}_{p}+\left(\boldsymbol{v}_{p} \cdot \boldsymbol{\Omega}\right) \boldsymbol{B}+\boldsymbol{E} \times \boldsymbol{\Omega}\right] \cdot \frac{\partial f}{\partial \boldsymbol{x}} \\
+\left[\boldsymbol{E}+\boldsymbol{v}_{p} \times \boldsymbol{B}+(\boldsymbol{E} \cdot \boldsymbol{B}) \boldsymbol{\Omega}\right] \cdot \frac{\partial f}{\partial \boldsymbol{p}}=I_{\mathrm{coll}}[f] \\
\quad \boldsymbol{\Omega}=\hbar \frac{\boldsymbol{p}}{2|\boldsymbol{p}|^{3}} \quad \text { Berry curvature } \\
\quad \varepsilon=|\boldsymbol{p}|-\boldsymbol{B} \cdot p \boldsymbol{\Omega} \quad \boldsymbol{v}=\frac{\partial \varepsilon}{\partial \boldsymbol{p}}
\end{gathered} \quad \begin{aligned}
& \text { Son-Yamamoto (2012) } \\
& \text { Stephanov-Yin (2012) }
\end{aligned}
$$

Chiral Kinetic Theory (CKT)

Boltzmann (Vlasov) equation with spin effects

$$
\begin{aligned}
& \left.(1+\boldsymbol{B} \cdot \boldsymbol{\Omega}) \frac{\partial f}{\partial t}+\left[\boldsymbol{v}_{p}+\left(\boldsymbol{v}_{p} \cdot \boldsymbol{\Omega}\right) \boldsymbol{B}+\boldsymbol{E} \times \boldsymbol{\Omega}\right]\right] \cdot \frac{\partial f}{\partial \boldsymbol{x}} \\
& +\left[\boldsymbol{E}+\boldsymbol{v}_{p} \times \boldsymbol{B}+(\boldsymbol{E} \cdot \boldsymbol{B}) \boldsymbol{\Omega}\right] \cdot \frac{\partial f}{\partial \boldsymbol{p}}=I_{\mathrm{coll}}[f] \\
& \boldsymbol{\Omega}= \pm \hbar \frac{\boldsymbol{p}}{2|\boldsymbol{p}|^{3}} \quad \text { Berry curvature } \\
& \quad \varepsilon=|\boldsymbol{p}|-\boldsymbol{B} \cdot p \boldsymbol{\Omega} \quad \boldsymbol{v}=\frac{\partial \varepsilon}{\partial \boldsymbol{p}}
\end{aligned} \quad \begin{aligned}
& \text { Sten-Yamamoto (2012) } \\
& \text { Stephanov-Yin (2012) }
\end{aligned}
$$

Chiral Kinetic Theory (CKT)

Boltzmann (Vlasov) equation with spin effects

$$
\begin{aligned}
\rho & =\int_{\boldsymbol{p}}(1+\boldsymbol{B} \cdot \boldsymbol{\Omega}) f(\boldsymbol{p}, \boldsymbol{x}) \\
\boldsymbol{j} & =\int_{\boldsymbol{p}}\left[\boldsymbol{v}_{p}+\left(\boldsymbol{v}_{p} \cdot \boldsymbol{\Omega}\right) \boldsymbol{B}+\boldsymbol{E} \times \boldsymbol{\Omega}\right] f(\boldsymbol{p}, \boldsymbol{x})
\end{aligned}
$$

Electric Current ~Magnetic Field
Chiral Magnetic Effect
"The effects of topological charge change in heavy ion collisions:
'Event by even P and CP violation'" by Kharzeev, McLerran, Warringa

Chiral Magnetic Effect

Chiral Magnetic Effect

"The Chiral Magnetic Effect" by Fukushima, Kharzeev, Warringa (2008)

Right-handed particles Momentum parallel to Spin

Left-handed particles
Momentum anti-parallel to Spin

Chiral Magnetic Effect

Chiral Magnetic Effect

"The Chiral Magnetic Effect" by Fukushima, Kharzeev, Warringa (2008)

$$
j=\frac{e^{2} \mu_{5}}{2 \pi^{2}} \boldsymbol{B}
$$

Chiral chemical potential is nonzero only out of equilibrium.
See: "Axial Ward identity and the Schwinger mechanism" by Copinger, Fukushima, Pu (2018)

Chiral Magnetic Effect

Chiral Magnetic Effect

"Real-time dynamics of the Chiral Magnetic Effect" by Fukushima, Kharzeev, Warringa (2010)

Chiral Magnetic Effect

Chiral Magnetic Effect

In heavy ion collisions isobar experiments will clarify!
"Examination of the observability of a chiral magnetically driven charge-separation difference..." by Magdy, Shi, Liao, Liu, Lacey (2018)

Classical statistical simulations by
J. Berges, S. Schlichting, N. Mueller, S. Sharma, M. Mace R. Venugopalan, ...

Experimentally confirmed in Weyl semimetals

Chiral Magnetic Effect

 How to see it?$$
\boldsymbol{j}_{\mathrm{CME}}=(\boldsymbol{E} \cdot \boldsymbol{B}) \boldsymbol{B} \propto B^{2}
$$

"Chiral anomaly and classical negative magnetoresistance of Weyl metals" by Son, Spivak (2013)
$\sigma_{\mathrm{CME}} \propto B^{2}$ Chiral kinetic theory in the rel.-time approx.

Chiral Magnetic Effect

How to see it?

"Chiral magnetic effect in ZrTe5" by Li, Kharzeev, ... (2015)

"Electric conductivity of hot and dense quark matter in a magnetic field..." by Fukushima, Hidaka (2017)

September 27,2019@ QSEC2019, Heidelberg

Chiral Kinetic Theory (CKT)

Universal scaling (nonthermal fixed point)?

"Self-similar inverse cascade of magnetic helicity driven by the chiral anomaly" by Hirono, Kharzeev, Yin (2015)
"Scaling laws in chiral hydrodynamic turbulence" by N. Yamamoto (2016)

Distribution func. not Lorentz scalar
$\delta t=\boldsymbol{\beta} \cdot \boldsymbol{x}$
$\delta \boldsymbol{x}=\boldsymbol{\beta} t+\boldsymbol{\beta} \times p \boldsymbol{\Omega}$
"Lorentz invariance in Chiral Kinetic Theory"
by Chen, Son, Stephanov, Yee, Yin (2014)
$\delta \boldsymbol{p}=\boldsymbol{\beta} \varepsilon_{p}+\underbrace{(\boldsymbol{\beta} \times \boldsymbol{\Omega}) \times \boldsymbol{B}}_{\text {September 27,2019 @ QSEC2019, Heidelberg }}$

Rotation induced Phenomena

L remains longer than B

L is ubiquitous in the nature
 Deformed Nuclei Neutron Stars Electron Vortices ...

Rotation induced Phenomena

 Polarization by Gyroscopic Motion

Global Polarization

Rotation induced Phenomena

Global Polarization of Λ

$$
\begin{aligned}
& P_{\text {Vortical }}=\frac{1}{2}\left(P_{\Lambda}+P_{\bar{\Lambda}}\right) \\
& P_{\text {Magnetic }}=\frac{1}{2}\left(P_{\Lambda}-P_{\bar{\Lambda}}\right)
\end{aligned}
$$

Becattini, Csernai, X.N.Wang, Q.Wang, Karpenko, ...

Rotation induced Phenomena

Analogy in cold atomic systems

"Einstein-de Haas effect in a dipolar Fermi gas" by U. Ebling, M. Ueda (2017)

Vlasov-Boltzmann simulation Polarization \rightarrow Mechanical Rotation (Einstein-de Haas effect)

In heavy ion collision
Orbital angular momentum \rightarrow Polarization
(Barnett effect)

Rotation induced Phenomena

Chiral Vortical Effect

CME $\boldsymbol{j} \sim \mu_{5} \boldsymbol{B}$
CSE $\quad \boldsymbol{j}_{5} \sim \mu \boldsymbol{B}$
"Anomalous axion interactions and topological currents in dense matter" by Metlitski, Zhitnitsky (2005)

Spin Polarization Material under \boldsymbol{B}
Rotation

Angular Velocity

Rotation induced Phenomena

Chiral Vortical Effect

$$
\begin{aligned}
\boldsymbol{j}_{R / L} & =\mp \boldsymbol{\omega} \int_{\boldsymbol{p}} f_{R / L}^{\prime}(p) \\
& = \pm\left(\frac{T^{2}}{12}+\frac{\mu_{R / L}^{2}}{4 \pi^{2}}+\cdots\right) \boldsymbol{\omega}
\end{aligned}
$$

"Quantum field theory at finite temperature in a rotating system" by A. Vilenkin (1980)

Rotation induced Phenomena

Chiral Vortical Effect

$$
/ T^{2}
$$

Rotation induced Phenomena

Rotation + Magnetic Field $=$ Finite Density

$$
n_{V}=\frac{e}{4 \pi^{2}} \boldsymbol{B} \cdot \boldsymbol{\omega}
$$

"Charge redistribution from anomalous magnetovorticity coupling" by Hattori, Yin (2016)

Helical Structure + Rotation \rightarrow Pumping

Rotation induced Phenomena

Where do you find a pump?

Everywhere...

Rotation induced Phenomena

Helical structure from external fields

You may think that rotating a whole system is a bit(?) difficult... don't worry!

You can use circularly rotating electromagnetic fields to induce similar phenomena.

"Chiral pumping effect induced by rotating electric fields" by Ebihara, Fukushima, Oka (2015)

Rotation induced Phenomena

Thouless pump in Floquet Theory

The energy shifted by $2 \pi / T=\omega$

[fig. from Higashikawa]
QCD ground state at high density

Rotation induced Phenomena

 Similar to QCD ground state at high density

High Density / Strong B
$\rightarrow(1+1)$ D effectively

In (1+1)D the ground state has spiral condensates stabilized by the axial anomaly (chiral pump)!
"Chiral magnetic spiral" by Basar, Dunne, Kharzeev (2010)

Rotation induced Phenomena

 Similar to QCD ground state at high density

QM'14 Talk

Rotation induced Phenomena

 Similar to QCD ground state at high density

QM'14 Proceedings

Rotation induced Phenomena

Similar to QCD ground state at high density

Landau factor Anomaly protected density

Rotation induced Phenomena

Simplest Floquet Example

[2-state model]

$$
\begin{aligned}
& H(t)=B_{z} \sigma_{z}+B_{\|}\left(\sigma_{x} \cos \omega t+\sigma_{y} \sin \omega t\right) \\
& U\left(t_{2}, t_{1}\right)=V\left(t_{2}\right) e^{-i H_{\mathrm{rot}}\left(t_{2}-t_{1}\right)} V^{\dagger}\left(t_{1}\right) \\
& V(t)=e^{-i \frac{\sigma_{z}}{2} \omega\left(t-t_{0}\right)} \\
& H_{\mathrm{rot}}=B_{z} \sigma_{z}+B_{\|}\left(\sigma_{x} \cos \omega t_{0}+\sigma_{y} \sin \omega t_{0}\right)-\frac{\sigma_{z}}{2} \omega \\
& \mu \sim \omega / 2
\end{aligned}
$$

Rotation induced Phenomena

Rotation + Magnetic Field = Finite Density

The story continues more...

Anomaly plays an essential role in constructing an equation of state for neutron stars.

Nuclear matter \sim Quark matter

EFT for dense nuclear matter under B is identical to chiral magnets due to anomaly.
(Poster by Nishimura)

Summary

Chirality and helicity connect diff. fields!

\square High-energy nuclear physics (HIC / spin)
\square Weyl / Dirac semimetals
\square Optical laser / Electron vortex beams

Magnetic field and/or Rotation
\square Heavy ion collision has both!

- Global (local) polarization measurements
- Isobar experiments disentangle B effects
\square Anomaly induces unusual phenomena
\square Ideas importable / exportable bet. diff. fields

