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Overview

Dynamically assisted Schwinger mechanism

Problem &} spontaneous particle production from the vacuum by
strong slow E-field + weak fast E-field w/ arbitrary time-dep.

Analytical formula for arbitrary time-dep. weak fast E

LCUBIIN s derived based on pert. theory in Furry picture
results = has wider applicability compared to conventional formulas
based on, e.g. WKB, worldline instanton method

. * Dynamically assisted Schwinger mech. in high-energy
SWVALIN = Franz-Keldysh effect in cond-mat

results

* Spin-dependence appears
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* is expected to occur in various systems under extreme conditions

e.g.) heavy ion collisions, high-Z atoms (Z>173), intense lasers, early Universe

» can be classified into 3 depending on size of freq. Q: E = Eycos(Qt)
. ) ) [Sauter (1932)][Schwinger (1951)]
(1) slow E-field (small Q)  Schwinger mechanism [Heisenberg, Euler (1936)]

(2) fast E-field (large Q) multi-photon pair production (eopay (195

[HT, Fujii, Itakura (2014)]

(3) both (slow + fast E) dynamically assisted Schwinger mechanism
[Dunne, Gies, Schutzhold (2008), (2009)][Piazza et al (2009)][Monin, Voloshin (2010)]




(1) Slow E-field = Schwinger mechanism

[Sauter (1932)] [Heisenberg, Euler (1936)][Schwinger (1951)]

E-field tilts the band = level crossing = tunneling (non-pert.)

t. tunneling




(1) Slow E-field = Schwinger mechanism

[Sauter (1932)] [Heisenberg, Euler (1936)][Schwinger (1951)]

E-field tilts the band = level crossing = tunneling (non-pert.)

t. tunneling

© well understood

(1) An analog of “electrical breakdown (Landau-Zener trans.)”
in cond-mat [Landau (1932)][Zener (1932)] [Majorana (1932)] [Stueckelberg (1932)]

(2) Analytical formula exists (Gaussian + spin-independent)

. d3N;  d3N| v n(m?+p%)
Schwinger formula: = = ——exXpl|—
& dp3 dp3 (2m)3 pl eE |




[Brezin, lzykson (1970)]
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(2) Fast E-field = pair production

interact as a particle (photon) = perturbative scattering

scattering

-
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[Brezin, lzykson (1970)]

° mU|ti-ph0t0n %mplngi(ﬂ?ggkﬁra(zom)]
(2) Fast E-field = pair production

interact as a particle (photon) = perturbative scattering

scattering

-

© well understood

(1) An analog of “photo-electric effect” in cond-mat
[Einstein (1905)]

(2) Analytical formula exists (delta func. + spin-independent)

d3N;  d3N E \?
LO perturbation theory: L = L= # X ( - ) 5(2\/m2 + p? - Q)

dp3 dp3

i

m2+p?




(3) Slow + Fast E-field = dynamically assisted
E'\D/Iunhe,vGiles,ﬁch(uztg?g)l]d (2008), (2009)][Piazza et al (2009)] Sc hWi nge r mech an ism

tunneling (non-pert.) by slow E == scattering (pert.) by fast E

scattering




(3) Slow + Fast E-field = dynamically assisted
[Dunne, Gies, Schutzhold (2008), (2009)][Piazza et al (2009)] Schwi nger mecha n ism

[Monin, Voloshin (2010)]

tunneling (non-pert.) by slow E == scattering (pert.) by fast E

scattering

NOT understood well

(1) No analog in cond-mat (?)
(2) No general analytical formula

- No analytical formula for weak fast E with arbitrary time-dep.

* Usually formulated w/i semi-classical methods (e.g. WKB, worldline)
= limited applicability: E must be adiabatic (i.e., valid for tiny w « 2m)
- Less attention has been paid to spin DoG




(3) Slow + Fast E-field = dynamically assisted
B[\)/lunr_we,\?iles, r?ch(uztg?é)))l]d (2008), (2009)][Piazza et al (2009)] Sc hWi nge r m ec h a n is m

tunneling (non-pert.) by slow E == scattering (pert.) by fast E

scattering

Note: important to phenomenology
ex.1) heavy ion collisions

- at glasma phase, a lot of (mini-)jets exists = int. b/w glasma & jets = dyn. ass.
(~ strong slow EM field) (~ weak fast EM field) Sch. mech.

- event generators (e.g. PYTHIA) assume a complete separation b/w soft
(by string breaking ~ Schwinger mech.) & hard (by pert. collisions) contributions

= dynamical assistance is completely neglected
EX.Z) laser [Dunne, Gies, Schutzhold (2008), (2009)][Piazza et al (2009)][Monin, Voloshin (2010)]

- available E-field is too weak = needs dynamical assistance to observe in exp.
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B Claim “Franz-Keldysh effect” is the cond-mat analog
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Franz-Keldysh effect

Apply strong slow E-field and a photon (~ weak fast E-field)
onto a semi-conductor, and measure photo-absorption rate

= photo-aborp. rate ~ Im[1-loop action] ~ particle prod. rate

= looks very similar to the dynamically assisted Schwinger mech.



Franz-Keldysh effect

Apply strong slow E-field and a photon (~ weak fast E-field)

onto a semi-conductor, and measure photo-absorption rate
= photo-aborp. rate ~ Im[1-loop action] ~ particle prod. rate

= looks very similar to the dynamically assisted Schwinger mech.
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difference (H—H)
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Franz-Keldysh effect

Apply strong slow E-field and a photon (~ weak fast E-field)
onto a semi-conductor, and measure photo-absorption rate

= photo-aborp. rate ~ Im[1-loop action] ~ particle prod. rate
= looks very similar to the dynamically assisted Schwinger mech.

Theory Experiment
< [Franz (1958)] [Keldysh (1958)] T (Si semi-cond.)
2 — |
E. I AL [Yacoby (1966)]
28 . -
2 © difference : f i
S (H—H) w/ strong slow E O = I, A
2 AN c A%
< > w/o strong slow E o b
Q- i q"'qé T Pjﬂ:}’\ﬁx‘;%
| = e HMEE
(photon energy) — (gap energy) i
= (a) enhancement below gap; (b) oscillation above gap

Show Franz-Keldysh effect is the correct analog [B] by
TO'dO (1) Deriving an analytical formula for the production [A]
(2) Using that formula to explicitly demonstrate (a), (b)
occur in the dynamically assisted Schwinger mech.
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Perturbation theory in Furry picture (1/4)
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dp3
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strong slow E is non-perturbative

while weak fast E is just perturbative




Perturbation theory in Furry picture (1/4)

d3N L .
dpss = <VaC|a;;,s ap,s|vac) In the

presence of strong slow . & weak fast &;

Evaluate

strong slow E is non-perturbative

while weak fast E is just perturbative

Perturbative expansion g, ¢ i.t.o. weak fast &

[Furry (1951)] [Fradkin, Gitman, Shvartsman (1991)] [Torgrimsson, Schneider, Shutzhold (2017)] [HT (2019)]



Perturbation theory in Furry picture (2/4)

Separate the total E-field E into
and weak fast &;

E — + gf ( > gf)




Perturbation theory in Furry picture (2/4)

Separate the total E-field E into
and weak fast &;

E —_ + Ef ( > Ef)

Solve Dirac eq. non-pert. w.r.t. -, but pert. w.r.t. &

[id — —m]Y = e
= () =9PO0) + [ dy*Sg(x, y)ed: )P O(y) + 0(leA|?)

Here, ¥(®) and Sg are non-perturbatively dressed by /. as

[id — /. —m]p©® =0
lig — —m]Sp(x,y) = 8*(x — y)




P@turbation theory in Furry picture (3/4)

~in/out Bin/out

Compute in/out annihilation operators a,;°", b,.°" from ¢

Al t . o
I P N [ il P
prvoutt | = eosmheen ] ©F\ (v setienteivnyt




P@turbation theory in Furry picture (3/4)

Aln/out bin/out

Compute in/out annihilation operators a, .S

from ¢

Al t . o
I P N [ il P
prvoutt | = eosmheen ] ©F\ (v setienteivnyt

= op s, Ops- are inequivalent 6},{15 # 0ps" and related with each
other by a Bogoliubov transformation

~out 1n
Clp, — d3 / aP,S;P’,S’ :Bp,s;pl,s/ p/ S/

woutt | — p _,B* a’ ~int
b_p S S/ p.s;p’,s’ p,s;p!,S! b_

p!,s’
where, up to 15t order in eAy,
psipnsr = f x4y " Py — j Pp el s + O(lecAs|?)

ﬁpsplsr dex w(O)out'l' 1()(1))slrn jd4x lp(O)outeqq l/J(O)m+O(|ecA | )

Here, +1/)(°)m/°“t are sol. of Dirac eq. dressed by - /. w/ different B.C.

(0)in/out —iwnt _in-
Yp.s Uy e PelP¥

. (0)in/out __ ' * = P .
[ig — m] 1y g =0 W _lm _lp;ogm/out vp e @pleipx




Rerturbation theory in Furry picture (4/4)

\/
Y13 &M Evaluate the in-vacuum expectation value of # operator

d3N,
dp3

= (vag; 1n|a§‘§t+ agt|vac; in) zjd3p |Bps:p' s
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\/
Y13 &M Evaluate the in-vacuum expectation value of # operator

d3N,
dp?

= (vag; 1n|a°uﬁ out|vac; in) 2 j d*p’ |By s ']

Assume /- is sufficiently slow (i.e., static) and spatially uniform

(0)in/out .

= analytical sol. of Dirac eq. +¥p ¢ is known

—» onecan evaluate B, ...,y o €xactly !  [HT, (2019)] [Huang, HT, (2019)]




Rerturbation theory in Furry picture (4/4)

\/
Y13 &M Evaluate the in-vacuum expectation value of # operator

d3N,
dp?

= (vag; 1n|a°m+ out|vac; in) 2 j d*p’ |By s ']

Assume /- is sufficiently slow (i.e., static) and spatially uniform
=> analytical sol. of Dirac eq. +1/J(O)m/°ut is known

—» onecan evaluate B, ...,y o €xactly !  [HT, (2019)] [Huang, HT, (2019)]

Remarks:
(1) Directly computing VEV of # operator [Baltz, McLerran (2001)]

- inclusive quantity that includes all the processes up to 1st order in &

el | E

(2) No aPPVOXimation in evaluating B?,S;p’,g’ cf) within 0-th order WKB [Torgrimsson et a/(2017)]
* important to discuss an analog of Franz-Keldysh effect in Schwinger mechanism

(vac; in aggﬁaglﬂvac in) = z| ep,sX; out|vac; in)|2

ot
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Formula (1/2): for Eg /7 &;

4

1m?2+p? (©  E(w i w?+ 4w i m? + p? '
14+ = pLj do £ )exp[ pll] 1F1( PL;Z;
0

[HT, (2019]




Formula (1/2): for Eg /7 &;

4

1m?2+p? (©  E(w i w?+ 4w i m? + p? '
1+ = pLj do £ )exp[ pll] 1F1( PL;Z;
0

[HT, (2019]




Formula (1/2): for Eg /7 &;

[ w* + 4wp,
exp —Z

[HT, (2019]

Dynamical assistance by fast &;



Formula (1/2): for Eq/7 & . ..

[ w* + 4wp,

Pl 3

Dynamical assistance by fast &;

* slow limit w/,/¢/. « 1: . dominates = usual Schwinger formula
d’N, Vv (m?+p?) S 7 (m?+p?)
dp® " (2n)3 P 3P| e ¥ &)
- fast limit w/,/~/. > 1: I dominates = multi-photon pair prod. (LO)
d3N, V. 1m?+p? |e&(2w,)|?
dp> (2m)B34  w} wp

m? + pi &

1+n
2




Formula (1/2): for Eq/7 & . ..

[ w* + 4wp,
exp —Z

Dynamical assistance by fast &;

* slow limit w/,/¢/. « 1: . dominates = usual Schwinger formula
d3N, Vv (m?+p?) S 7 _ m(m?+p?)
ap® ~ 2n) P @ P e+ &
- fast limit w/,/~/. > 1: I dominates = multi-photon pair prod. (LO)

d*N, V. 1m* +pi |e&(2w,)1?
dp> (2m)%4 w3 wp

m? + pi &

1+n
2

w Derived an analytical formula for the dynamically
assisted Schwinger mech. for arbitrary time-dep. &;




Formula (2/2): for Eq X &

[Huang, HT, (2019)]

d*N, V m(m?+p?)
dp> (2m)3 P eE,

® “’plllm +p? E(w) - Eg —i2 im?+pi i ow?
1 d ek s — 4eEs F |1 — = L9
X +J0 e T eE, 2 ° W\"T 2T eR, Y726k,
. wPy g —""2 i m?+ ia)
0 Esw 2 BES ZBE
2
© 9P (E(w) X - E o i m® + i w?
+s><ij dw e leEs( (@) Zpl) SIm |e” #eEs 1Fy 1———pl,1;—
0 Esw 2 eES ZBES
2
wpnmEx W +158y W _jw? i m? + i w?
j dwe eEs— (@) ( ) e 4eEs F 1__—pi,1;__
Es 2  eE 2 eE,

* becomes complicated (red = new terms), but the basic structure is the same
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Formula (2/2): for Eq X &

[Huang, HT, (2019)]

Dynamical assistance by fast &

d3N, 1% [ m(m?+p?
p J—

= ex
dp3 (2m)3 eE,
o P11 m? +p2 &w) - Ey i@ im?+p5 i w?
YeE s — 4eEg —_ — D
X K , doe 2 ek E? © f\1 2 ek 'Z'ZeES
o0 Pn Ei(w) - _@? i m? + i w?
. flw) P pi
s dwe ©Es—— "ZRele %eEs F (1 -t 1;——
o M E.w [ 2 1( 2 ek, ZeES>]
2
® _i2P1 (Ep(w) X -E L@ im?+p? i w?
+s><if dwe LeEs( (@) Zpl) 5 Im [e” %eEs 1F4 1———m;1;—
0 ESw 2 eE; 2eE;
2
wpumgx w +lsg3’ w _ w? i m? + p? i w?
j do6 eES_ = ( )m e %°Es Fy 1___1%;1;__
9 2 ek 2ekEg

* becomes complicated (red = new terms), but the basic structure is the same



Formula (2/2): for Eq X &

[Huang, HT, (2019)]

Dynamical assistance by fast &

d3N, 1% [ m(m?+p?)
p J—

ex
dp3 (2m)3 eE,
o0 wpulm 4+ p? Ei(w) - Eg 9% im?2+p? i w?
1 dwe eEs = 1eEs F, (1 - 12—
X * | @e 2 ek E? © 2 ek, 2 eE,

« p" Ee(w) - w2 i m? + i w?
. flw) Py pi
S dwe s ——~ TZRele %eEs F (1 -—=——15;1;=
)y Esw [ ! 1( 2 eE, ' '2¢E )]

2 ek, "ZeES

| _ A\, 2
o ~iPim EF(w) [+ isEl (w) @ im?+p? i w?
Im 1F1

—i(;%” (Ex(w) X py) - Es Im [e—i%;s F, ( i m® +pi 1_£ w? >]

+s><if dw e > 1—-—
0 Esw

d ebs 4eF, 1—-— L.
P “° 0w B © 2 ek, 2 ek,

* becomes comolizGted (red = new terms), but the basic structure is the same

. spin-dependence appears even without magnetic fields

[Foldy, Wouth 1950
" Dirac particle has a spin-orbit coupling s - (p X E) T§n|y195o1l;] uysen (1950)]

e.g. application to spintronics [Huang, Matsuo, HT (2019)]
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Results (1/3): Total

prod. # N

Parallel field configuration: E = ( 0 )
+ € cos Ot
N, difference (H— M) — m/ JeE; =3.0
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Franz-Keldysh effect

Apply strong slow E-field and a photon (~ weak fast E-field)
onto a semi-conductor, and measure photo-absorption rate

= photo-aborp. rate ~ Im[1-loop action] ~ particle prod. rate
= looks very similar to the dynamically assisted Schwinger mech.

Theory Experiment

—\ N\

difference
(H—H) w/ strong slow E

k S I|| (Si semi-cond.)
|

8 8 & & %

Q
o]
[+
.

Photo-absorption

™~ w/o strong slow E

difference (H—H)

o
=02 |

|
=03
—‘qu )

o

(photon energy) — (gap energy)

PHOTON ENERGY (av)

= (a) enhancement below gap; (b) oscillation above gap

Show Franz-Keldysh effect is the correct analog [B] by
TO'dO (1) Deriving an analytical formula for the production [A]
(2) Using that formula to explicitly demonstrate (a), (b)
occur in the dynamically assisted Schwinger mech.

eE; =3.0

eEs = 4.0

eEs; =5.0
JeEs = 10.0
JeEs = 25.0
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Results (1/3): Total prod. # N

Parallel field configuration: E = ( 0 )

+ £ cos Ot
N, difference (H— M) — m/ JeE; =3.0
(eEs)ZVT For m/w/eES = 2.5; g/ES = 0.01 (Ne _ Ne(pert))/(eES)ZVT
m/,/eEs = 4.0

— m/,/eE; =5.0
m/\/eEs = 10.0
m/,/eEs = 25.0

&)

1. =102 L

| perturbative
s .10 [ (prod. w/o

=101 p - - T
) 13: J
=101 f .
=107 11
«10-Wt
0

a0 05 10 15 20
frequency
PR [ T -

0//eT;

10 12 14

& =107 |
- our formula

« . 10-7[ (prod.w/r.)

= Pk Ll P en

frequency

(@ - 2m)/\[eE

(=]

<1077 F

fna

I
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@

Completely the same as the Franz-Keldysh effect !
- enhancement below the gap bunne, Gies, schutzhold (2008), (2009)]
- oscillation above the gap



Results (1/3): Total prod. # N

Parallel field configuration: E = ( 0 )

+ € cos Ot
N, difference (H— M) — m/\JeEs =30
(eEs)ZVT Form/./eE; = 2.5;E/E; = 0.01 N, — Népert))/(eES)zVT
i m/\ eEs = 4.0
1.2 « 1072 — 2 — m/,/eEs = 5.0
- T m/\/eEs = 10.0
1. %107 - BT
[ 5 x0T p T
- perturbative JREpTY | i m/ JeEs = 25.0
g =107 |- (prod. w/o ) N | _
~ m_fz_ 2.=10711 §
B - our formula 1.2 10 'k
4107 | (Prod. w/Eky) j:u:u 5E 10 18 20
: Schwinger 7 . frequency
21077 | (Q—2m)/ ek
frequency Q/./eFE;
s e & 10 iz e

Completely the same as the Franz-Keldysh effect !
- enhancement below the gap bunne, Gies, schutzhold (2008), (2009)]
- oscillation above the gap

Franz-Keldysh effect = dyn. ass. Schwinger mech.




Intuitive explanation

positive energy states

probability density

negative energy states

guantum tunneling = enhancement

guantum reflection = oscillation
- non-uniform prob. dist. due to interference b/w in-coming and reflected waves

- production occurs most efficiently at the maxima



Results (2/3): Momentum dist. d3N, /dp3

momentum dist.
(2m)3 d3N,
v dp3

0.000014 [

0.000012

0.000010
8. .10 [
8 =105 [

4 .10 %[

3

<10 E[

Parallel field configuration: E = (

0
0

+ € cos Ot )

For m/.[eE, = 2.5;E/E, = 0.01

1221072 o
<10}
<1077
=102 |
=102 |
=102

0

00 05 10 15 20

Bl = O 0O —

J

0

- enhancement below gap; oscillation above gap

4

& 10 12 14

— our analytical result

e
exp| -?E_l

mumerical result

.. ﬂﬂﬂﬂﬂbm frequency Q/./eEj

ef) effective mass
[Kohlfurst, Gies,
Alkofer (2014)]

- the pert. peak is slightly above the gap O = 2w, due to reflection

- excellent agreement b/w our analytical formula and the numerics



Results (3/3): Spin-dependence

Perpendicular field configuration: E = <

€ cos B¢, X cos (Ot
€ sin ¢ X cos (Ut

|

1d3N;

momentum dist. of spin up

5.x107
4.x107
3.x1077
2.x107

1.x1077

a3 diff. b/w spin up and down

1d3N; 143Ny

vV dp3

- Basically the same as the parallel case: enhancement/oscillation
below/above gap

- Spin-dependence appears = O(10%) effect = not negligible

- 6, -dependent because of the spin-orbit interaction s - (p X €)

vV dp3

1.6x1077
1.0x107"
50x10°8
0

-50x10"%
-1.0x1077

-16x1077



SUMMARY



[HT, PRD 99, 056006 (2019)]

S u m m a r [X.-G. Huang, HT, PRD 100, 016013 (2019)]
[X.-G. Huang, M. Matsuo, HT (to appear in PTEP)]

Dynamically assisted Schwinger mechanism

Problem E spontaneous particle production from the vacuum by
strong slow E-field + weak fast E-field w/ arbitrary time-dep.

Analytical formula for arbitrary time-dep. weak fast E
Ll LI 1N s derived based on pert. theory in Furry picture

results = reproduces the numerics so well and has wider applicability
compared to conventional methods (e.g. WKB, worldline)

* Dyn. ass. Schwinger mech. = FK effect in cond-mat

Physical = enhancement/oscillation below/above the gap energy
=V I - Spin-dependence appears

= not negligible ~ O(10%) effect

* Interact w/ cond-mat

* Phenomenological
applications. (e.g. HIC, laser, ...)







Interplay b/w pert. & non-pert. prod.

[HT, Fujii, Itakura (2014)]

Sauter E-field with lifetime t & strength E: E = Ey/cosh?(t/7)

0.01

0.001 F /

non-perturbative
(Schwinger)

0.0001 ¢ S
1x105 |~

1x106 |

1107 | Full

/ Schwinger

i perturbative ————-
1x108 ' ' ‘
gE/m 0.1 1

peak value of (1N)d3 Nl’dp3

-t =k

[¥]

10 100
|gEl/m?

* Analytically solvable [sauter (1932)]

« 2 dimensionless parameters y = gE,t/m, controls the interplay

- because there are 3 dimensionfull parameters



