The Schwinger mechanism with perturbative electric fields

Hidetoshi TAYA (Fudan University)

[<u>HT</u>, PRD 99, 056006 (2019)] [X.-G. Huang, <u>HT</u>, PRD 100, 016013 (2019)] [X.-G. Huang, M. Matsuo, <u>HT</u> (to appear in PTEP)]

Overview

Problem	Dynamically assisted Schwinger mechanism ⇒ spontaneous particle production from the vacuum by strong slow E-field + weak fast E-field w/ <u>arbitrary</u> time-dep.
Technical results	Analytical formula for <u>arbitrary</u> time-dep. weak fast E is derived based on pert. theory in Furry picture ⇒ has wider applicability compared to conventional formulas based on, e.g. WKB, worldline instanton method
Physical results	 Dynamically assisted Schwinger mech. in high-energy = Franz-Keldysh effect in cond-mat Spin-dependence appears

is expected to occur in various systems under extreme conditions

e.g.) heavy ion collisions, high-Z atoms (Z>173), intense lasers, early Universe

is expected to occur in various systems under extreme conditions

e.g.) heavy ion collisions, high-Z atoms (Z>173), intense lasers, early Universe

• <u>can be classified into 3</u> depending on size of freq. Ω : $E = E_0 \cos(\Omega t)$

(1) slow E-field (small Ω)
 (2) fast E-field (large Ω)
 (3) both (slow + fast E)
 (buth (slow + fast E))
 (c) fast E-field (large Ω)
 <l

(1) Slow E-field ⇒ Schwinger mechanism

[Sauter (1932)] [Heisenberg, Euler (1936)] [Schwinger (1951)]

(1) Slow E-field ⇒ Schwinger mechanism

[Sauter (1932)] [Heisenberg, Euler (1936)] [Schwinger (1951)]

(3) Slow + Fast E-field ⇒ dynamically assisted [Dunne, Gies, Schutzhold (2008), (2009)][Piazza et al (2009)] [Monin, Voloshin (2010)]

(3) Slow + Fast E-field ⇒ dynamically assisted [Dunne, Gies, Schutzhold (2008), (2009)][Piazza et al (2009)] [Monin, Voloshin (2010)]

tunneling (non-pert.) by slow E + scattering (pert.) by fast Escattering slow + fast E

NOT understood well

- (1) No analog in cond-mat (?)
- (2) No general analytical formula
- No analytical formula for weak fast E with <u>arbitrary</u> time-dep.
- Usually formulated w/i semi-classical methods (e.g. WKB, worldline) \Rightarrow **limited applicability:** E must be adiabatic (i.e., valid for tiny $\omega \ll 2m$)
- Less attention has been paid to spin DoG

(3) Slow + Fast E-field ⇒ dynamically assisted [Dunne, Gies, Schutzhold (2008), (2009)][Piazza et al (2009)] [Monin, Voloshin (2010)]

tunneling (non-pert.) by slow E + scattering (pert.) by fast E scattering slow + fast E

Note: important to phenomenology

ex.1) heavy ion collisions

- at *glasma* phase, a lot of (mini-)jets exists ⇒ int. b/w glasma & jets ⇒ dyn. ass.
 (~ strong slow EM field) (~ weak fast EM field)
 Sch. mech.
- event generators (e.g. PYTHIA) assume a complete separation b/w soft (by string breaking ~ Schwinger mech.) & hard (by pert. collisions) contributions

\Rightarrow dynamical assistance is completely neglected

ex.2) [Dunne, Gies, Schutzhold (2008), (2009)][Piazza et al (2009)][Monin, Voloshin (2010)]

• available E-field is too weak ⇒ needs dynamical assistance to observe in exp.

Purpose of this study

Deepen our understanding of "dynamically assisted Schwinger mech."

Purpose of this study

Deepen our understanding of "dynamically assisted Schwinger mech."

A

Derive a general analytical formula

Purpose of this study

Deepen our understanding of "dynamically assisted Schwinger mech."

A Derive a general analytical formula

B Claim "Franz-Keldysh effect" is the cond-mat analog

<u>Apply strong slow E-field and a photon (~ weak fast E-field)</u> onto a semi-conductor, and <u>measure photo-absorption rate</u>

- \Rightarrow photo-aborp. rate \sim Im[1-loop action] \sim particle prod. rate
- \Rightarrow looks very similar to the dynamically assisted Schwinger mech.

<u>Apply strong slow E-field and a photon (~ weak fast E-field)</u> onto a semi-conductor, and <u>measure photo-absorption rate</u>

- \Rightarrow photo-aborp. rate \sim Im[1-loop action] \sim particle prod. rate
- \Rightarrow looks very similar to the dynamically assisted Schwinger mech.

<u>Apply strong slow E-field and a photon (~ weak fast E-field)</u> onto a semi-conductor, and <u>measure photo-absorption rate</u>

- \Rightarrow photo-aborp. rate \sim Im[1-loop action] \sim particle prod. rate
- \Rightarrow looks very similar to the dynamically assisted Schwinger mech.

 \Rightarrow (a) enhancement below gap; (b) oscillation above gap

To-do

Show Franz-Keldysh effect is the correct analog [B] by
(1) Deriving an analytical formula for the production [A]
(2) Using that formula to explicitly demonstrate (a), (b) occur in the dynamically assisted Schwinger mech.

Perturbation theory in Furry picture (1/4)

Goal

Evaluate $\frac{d^3 N_s}{dp^3} = \langle vac | \hat{a}_{p,s}^{\dagger} \hat{a}_{p,s} | vac \rangle$ in the presence of strong slow E_s & weak fast \mathcal{E}_f

Perturbation theory in Furry picture (1/4)

Goal

Evaluate $\frac{d^3 N_s}{dp^3} = \langle vac | \hat{a}_{p,s}^{\dagger} \hat{a}_{p,s} | vac \rangle$ in the presence of strong slow E_s & weak fast \mathcal{E}_f

strong slow E is non-perturbative

while weak fast E is just perturbative

Perturbation theory in Furry picture (1/4)

[Furry (1951)] [Fradkin, Gitman, Shvartsman (1991)] [Torgrimsson, Schneider, Shutzhold (2017)] [HT (2019)]

Perturbation theory in Furry picture (2/4)

Perturbation theory in Furry picture (2/4)

Perturbation theory in Furry picture (3/4)

STEP 3

Compute in/out annihilation operators $\widehat{a}_{p,s}^{\mathrm{in/out}}$, $\widehat{b}_{p,s}^{\mathrm{in/out}}$ from $\widehat{\psi}$

$$\begin{pmatrix} \hat{a}_{\boldsymbol{p},s}^{\text{in/out}} \\ \hat{b}_{-\boldsymbol{p},s}^{\text{in/out}\dagger} \end{pmatrix} \equiv \lim_{t \to -\infty/+\infty} \int d^3 \boldsymbol{x} \begin{pmatrix} (u_{\boldsymbol{p},s} e^{-i\omega_{\boldsymbol{p}t}} e^{i\boldsymbol{p}\cdot\boldsymbol{x}})^{\dagger} \\ (v_{\boldsymbol{p},s} e^{+i\omega_{\boldsymbol{p}t}} e^{i\boldsymbol{p}\cdot\boldsymbol{x}})^{\dagger} \end{pmatrix} \hat{\psi}(\boldsymbol{x})$$

Perturbation theory in Furry picture (3/4)

EP 3

Compute in/out annihilation operators $\hat{a}_{p,s}^{ ext{in/out}}$, $\hat{b}_{p,s}^{ ext{in/out}}$ from $\hat{\psi}$

$$\begin{pmatrix} \hat{a}_{\boldsymbol{p},s}^{\text{in/out}} \\ \hat{b}_{-\boldsymbol{p},s}^{\text{in/out}\dagger} \end{pmatrix} \equiv \lim_{t \to -\infty/+\infty} \int d^3 \boldsymbol{x} \begin{pmatrix} (u_{\boldsymbol{p},s} e^{-i\omega_{\boldsymbol{p}t}} e^{i\boldsymbol{p}\cdot\boldsymbol{x}})^{\dagger} \\ (v_{\boldsymbol{p},s} e^{+i\omega_{\boldsymbol{p}t}} e^{i\boldsymbol{p}\cdot\boldsymbol{x}})^{\dagger} \end{pmatrix} \hat{\psi}(\boldsymbol{x})$$

⇒ $\hat{o}_{p,s}^{\text{in}}$, $\hat{o}_{p,s}^{\text{out}}$ are inequivalent $\hat{o}_{p,s}^{\text{in}} \neq \hat{o}_{p,s}^{\text{out}}$ and related with each other by a Bogoliubov transformation

$$\begin{pmatrix} \hat{a}_{\boldsymbol{p},s}^{\text{out}} \\ \hat{b}_{-\boldsymbol{p},s}^{\text{out}\dagger} \end{pmatrix} = \sum_{s'} \int d^3 \boldsymbol{p}' \begin{pmatrix} \alpha_{\boldsymbol{p},s;\boldsymbol{p}',s'} & \beta_{\boldsymbol{p},s;\boldsymbol{p}',s'} \\ -\beta_{\boldsymbol{p},s;\boldsymbol{p}',s'}^* & \alpha_{\boldsymbol{p},s;\boldsymbol{p}',s'}^* \end{pmatrix} \begin{pmatrix} \hat{a}_{\boldsymbol{p}',s'}^{\text{in}} \\ \hat{b}_{-\boldsymbol{p}',s'}^{\text{in}\dagger} \end{pmatrix}$$

where, up to 1st order in $e\mathcal{A}_{f}$, $\alpha_{p,s;p',s'} = \int d^{3}x_{+}\psi_{p,s}^{(0)out\dagger}\psi_{p',s'}^{(0)in} - i\int d^{4}x_{+}\bar{\psi}_{p,s}^{(0)out}e\mathcal{A}_{f}\psi_{p',s'}^{(0)in} + O(|e\mathcal{A}_{f}|^{2})$ $\beta_{p,s;p',s'} = \int d^{3}x_{-}\psi_{p,s}^{(0)out\dagger}\psi_{p',s'}^{(0)in} - i\int d^{4}x_{-}\bar{\psi}_{p,s}^{(0)out}e\mathcal{A}_{f}\psi_{p',s'}^{(0)in} + O(|e\mathcal{A}_{f}|^{2})$

Here, $_{\pm}\psi_{p,s}^{(0)in/out}$ are sol. of Dirac eq. **dressed by** eA_s w/ different B.C.

$$[i\partial - eA_{s} - m] \pm \psi_{p,s}^{(0)in/out} = 0 \quad W/ \lim_{t \to -\infty/+\infty} \begin{pmatrix} +\psi_{p,s}^{(0)in/out} \\ -\psi_{p,s}^{(0)in/out} \end{pmatrix} = \begin{pmatrix} u_{p,s}e^{-i\omega_{p}t}e^{ip\cdot x} \\ v_{p,s}e^{-i\omega_{p}t}e^{ip\cdot x} \end{pmatrix}$$

Perturbation theory in Furry picture (4/4)

STEP 4

Evaluate the in-vacuum expectation value of # operator

$$\frac{\mathrm{d}^{3}N_{e}}{\mathrm{d}\boldsymbol{p}^{3}} \equiv \langle \mathrm{vac}; \mathrm{in} | a_{\boldsymbol{p},s}^{\mathrm{out}\dagger} a_{\boldsymbol{p},s}^{\mathrm{out}\dagger} | \mathrm{vac}; \mathrm{in} \rangle = \sum_{s'} \int \mathrm{d}^{3}\boldsymbol{p}' \left| \beta_{\boldsymbol{p},s;\boldsymbol{p}',s'} \right|^{2}$$

Perturbation theory in Furry picture (4/4)

STEP 4

Evaluate the in-vacuum expectation value of # operator

$$\frac{\mathrm{d}^{3}N_{e}}{\mathrm{d}\boldsymbol{p}^{3}} \equiv \langle \mathrm{vac; in} | a_{\boldsymbol{p},s}^{\mathrm{out}\dagger} a_{\boldsymbol{p},s}^{\mathrm{out}\dagger} | \mathrm{vac; in} \rangle = \sum_{s'} \int \mathrm{d}^{3}\boldsymbol{p}' \left| \beta_{\boldsymbol{p},s;\boldsymbol{p}',s'} \right|^{2}$$

Assume E_s is sufficiently slow (i.e., static) and spatially uniform

- \Rightarrow analytical sol. of Dirac eq. $_{\pm}\psi^{(0)in/out}_{p,s}$ is known
- \Rightarrow one can evaluate $\beta_{p,s;p',s'} \underline{exactly!}$ [HT, (2019)] [Huang, HT, (2019)]

Perturbation theory in Furry picture (4/4)

STEP 4

Evaluate the in-vacuum expectation value of # operator

$$\frac{\mathrm{d}^{3}N_{e}}{\mathrm{d}\boldsymbol{p}^{3}} \equiv \langle \mathrm{vac}; \mathrm{in} | a_{\boldsymbol{p},s}^{\mathrm{out}\dagger} a_{\boldsymbol{p},s}^{\mathrm{out}\dagger} | \mathrm{vac}; \mathrm{in} \rangle = \sum_{s'} \int \mathrm{d}^{3}\boldsymbol{p}' \left| \beta_{\boldsymbol{p},s;\boldsymbol{p}',s'} \right|^{2}$$

Assume E_s is sufficiently slow (i.e., static) and spatially uniform

- \Rightarrow analytical sol. of Dirac eq. $_{\pm}\psi^{(0)in/out}_{p,s}$ is known
- \Rightarrow one can evaluate $\beta_{p,s;p',s'} \underline{exactly!}$ [HT, (2019)] [Huang, HT, (2019)]

Remarks: (1) Directly computing VEV of # operator [Baltz, McLerran (2001)] • inclusive quantity that includes all the processes up to 1st order in \mathcal{E}_{f}

Formula (1/2): for *E*_S *// E*_f [HT, (2019]

 $\frac{d^{3}N_{e}}{dp^{3}} = \frac{V}{(2\pi)^{3}} \exp\left[-\frac{\pi(m^{2}+p_{\perp}^{2})}{eE_{s}}\right] \times \left|1 + \frac{1}{2}\frac{m^{2}+p_{\perp}^{2}}{eE_{s}}\int_{0}^{\infty}d\omega\frac{\tilde{\mathcal{E}}_{f}(\omega)}{E_{s}}\exp\left[-\frac{i}{4}\frac{\omega^{2}+4\omega p_{\parallel}}{eE_{s}}\right]{}_{1}F_{1}\left(1-\frac{i}{2}\frac{m^{2}+p_{\perp}^{2}}{eE_{s}};2;\frac{i}{2}\frac{\omega^{2}}{eE_{s}}\right)\right|^{2}$

Formula (1/2): for *E*_S // *E*_f [HT, (2019]

$$\frac{d^3 N_e}{d\boldsymbol{p}^3} = \frac{V}{(2\pi)^3} \exp\left[-\frac{\pi (m^2 + \boldsymbol{p}_\perp^2)}{eE_s}\right] \times \left[1 + \frac{1}{2} \frac{m^2 + \boldsymbol{p}_\perp^2}{eE_s} \int_0^\infty d\omega \frac{\tilde{\mathcal{E}}_{\mathbf{f}}(\omega)}{E_s} \exp\left[-\frac{i}{4} \frac{\omega^2 + 4\omega p_{\parallel}}{eE_s}\right] {}_1F_1\left(1 - \frac{i}{2} \frac{m^2 + \boldsymbol{p}_\perp^2}{eE_s}; 2; \frac{i}{2} \frac{\omega^2}{eE_s}\right)\right]^2$$

Schwinger mech. by slow *E*_s

Formula (1/2): for *E*_S // *E*_f [HT, (2019]

• slow limit $\omega/\sqrt{eE_s} \ll 1$: dominates \Rightarrow usual Schwinger formula $\frac{d^3 N_e}{dp^3} \sim \frac{V}{(2\pi)^3} \exp\left[-\frac{\pi(m^2+p_{\perp}^2)}{eE_s}\right] \left|1 + \frac{\pi}{2} \frac{m^2 + p_{\perp}^2}{eE_s} \frac{\mathcal{E}_f}{\mathcal{E}_s}\right|^2 \sim \frac{V}{(2\pi)^3} \exp\left[-\frac{\pi(m^2+p_{\perp}^2)}{e(\mathcal{E}_s + \mathcal{E}_f)}\right]$ • fast limit $\omega/\sqrt{eE_s} \gg 1$: dominates \Rightarrow multi-photon pair prod. (LO) $\frac{d^3 N_e}{dp^3} \sim \frac{V}{(2\pi)^3} \frac{1}{4} \frac{m^2 + p_{\perp}^2}{\omega_p^2} \frac{|e\widetilde{\mathcal{E}}_f(2\omega_p)|^2}{\omega_p^2}$

Formula (1/2): for *E*_S // *E*_f [HT, (2019]

• slow limit $\omega/\sqrt{eE_s} \ll 1$: dominates \Rightarrow usual Schwinger formula $\frac{d^3 N_e}{dp^3} \sim \frac{V}{(2\pi)^3} \exp\left[-\frac{\pi(m^2 + p_{\perp}^2)}{eE_s}\right] \left|1 + \frac{\pi}{2} \frac{m^2 + p_{\perp}^2}{eE_s} \frac{\mathcal{E}_f}{E_s}\right|^2 \sim \frac{V}{(2\pi)^3} \exp\left[-\frac{\pi(m^2 + p_{\perp}^2)}{e(E_s + \mathcal{E}_f)}\right]$ • fast limit $\omega/\sqrt{eE_s} \gg 1$: dominates \Rightarrow multi-photon pair prod. (LO) $\frac{d^3 N_e}{dp^3} \sim \frac{V}{(2\pi)^3} \frac{1}{4} \frac{m^2 + p_{\perp}^2}{\omega_p^2} \frac{|e\tilde{\mathcal{E}}_f(2\omega_p)|^2}{\omega_p^2}$

Derived an analytical formula for the dynamically assisted Schwinger mech. for <u>arbitrary</u> time-dep. \mathcal{E}_{f}

Formula (2/2): for $E_S \not\in \mathcal{E}_f$

[Huang, <u>HT</u>, (2019)]

$$\frac{d^{3}N_{e}}{dp^{3}} = \frac{V}{(2\pi)^{3}} \exp\left[-\frac{\pi(m^{2}+p_{\perp}^{2})}{eE_{s}}\right] \times \left[\left| 1 + \int_{0}^{\infty} d\omega e^{-i\frac{\omega p_{\parallel}}{eE_{s}}} \frac{1}{2} \frac{m^{2}+p_{\perp}^{2}}{eE_{s}} \frac{\tilde{\mathcal{E}}_{f}(\omega) \cdot E_{s}}{E_{s}^{2}} e^{-i\frac{\omega^{2}}{4eE_{s}}} e^{-i\frac{\omega^{2}}{4eE_{s}}} F_{1}\left(1 - \frac{i}{2}\frac{m^{2}+p_{\perp}^{2}}{eE_{s}}; 2; \frac{i}{2}\frac{\omega^{2}}{eE_{s}}\right) \right. \\ \left. + i\int_{0}^{\infty} d\omega e^{-i\frac{\omega p_{\parallel}}{eE_{s}}} \frac{\tilde{\mathcal{E}}_{f}(\omega) \cdot p_{\perp}}{E_{s}\omega} \operatorname{Re}\left[e^{-i\frac{\omega^{2}}{4eE_{s}}} F_{1}\left(1 - \frac{i}{2}\frac{m^{2}+p_{\perp}^{2}}{eE_{s}}; 1; \frac{i}{2}\frac{\omega^{2}}{eE_{s}}\right)\right] \right. \\ \left. + s \times i\int_{0}^{\infty} d\omega e^{-i\frac{\omega p_{\parallel}}{eE_{s}}} \frac{(\tilde{\mathcal{E}}_{f}(\omega) \times p_{\perp}) \cdot E_{s}}{E_{s}^{2}\omega} \operatorname{Im}\left[e^{-i\frac{\omega^{2}}{4eE_{s}}} F_{1}\left(1 - \frac{i}{2}\frac{m^{2}+p_{\perp}^{2}}{eE_{s}}; 1; \frac{i}{2}\frac{\omega^{2}}{eE_{s}}\right)\right] \right|^{2} \\ \left. + \left| \int_{0}^{\infty} d\omega e^{-i\frac{\omega p_{\parallel}}{eE_{s}}} \frac{\tilde{\mathcal{E}}_{f}^{*}(\omega) + is\tilde{\mathcal{E}}_{f}^{*}(\omega)}{E_{s}} \operatorname{Im}\left[e^{-i\frac{\omega^{2}}{4eE_{s}}} F_{1}\left(1 - \frac{i}{2}\frac{m^{2}+p_{\perp}^{2}}{eE_{s}}; 1; \frac{i}{2}\frac{\omega^{2}}{eE_{s}}\right)\right] \right|^{2} \right] \right|^{2} \right|^{2} \right] \right|^{2} \right|^{2} \left| \frac{1}{2} + \frac{1}{2} \int_{0}^{\infty} d\omega e^{-i\frac{\omega p_{\parallel}}{eE_{s}}} \frac{m}{\omega} \frac{\tilde{\mathcal{E}}_{f}^{*}(\omega) + is\tilde{\mathcal{E}}_{f}^{*}(\omega)}{E_{s}} \operatorname{Im}\left[e^{-i\frac{\omega^{2}}{4eE_{s}}} F_{1}\left(1 - \frac{i}{2}\frac{m^{2}+p_{\perp}^{2}}{eE_{s}}; 1; \frac{i}{2}\frac{\omega^{2}}{eE_{s}}\right)\right|^{2} \right|^{2} \right|^{2} \right|^{2} \left| \frac{1}{2} + \frac{1}{2} \int_{0}^{\infty} d\omega e^{-i\frac{\omega p_{\parallel}}{eE_{s}}} \frac{m}{\omega} \frac{\tilde{\mathcal{E}}_{f}^{*}(\omega) + is\tilde{\mathcal{E}}_{f}^{*}(\omega)}{E_{s}} \operatorname{Im}\left[e^{-i\frac{\omega^{2}}{4eE_{s}}} F_{1}\left(1 - \frac{i}{2}\frac{m^{2}+p_{\perp}^{2}}{eE_{s}}; 1; \frac{i}{2}\frac{\omega^{2}}{eE_{s}}\right)\right|^{2} \right|^{2} \right|^{2} \left| \frac{1}{2} + \frac{1}{2} \int_{0}^{\infty} d\omega e^{-i\frac{\omega p_{\parallel}}{eE_{s}}} \frac{m}{\omega} \frac{\tilde{\mathcal{E}}_{f}^{*}(\omega) + is\tilde{\mathcal{E}}_{f}^{*}(\omega)}{E_{s}} \operatorname{Im}\left[e^{-i\frac{\omega^{2}}{4eE_{s}}} F_{1}\left(1 - \frac{i}{2}\frac{m^{2}+p_{\perp}^{2}}{eE_{s}}; 1; \frac{i}{2}\frac{\omega^{2}}{eE_{s}}\right)\right|^{2} \right|^{2} \right|^{2} \left| \frac{1}{2} + \frac{1}{2} \int_{0}^{\infty} d\omega e^{-i\frac{\omega p_{\parallel}}{eE_{s}}} \frac{m}{\omega} \frac{\tilde{\mathcal{E}}_{f}^{*}(\omega) + is\tilde{\mathcal{E}}_{f}^{*}(\omega)}{E_{s}} \operatorname{Im}\left[e^{-i\frac{\omega^{2}}{4eE_{s}}} F_{1}\left(1 - \frac{i}{2}\frac{i}{eE_{s}}\right)|^{2} \right|^{2} \right|^{2} \right|^{2} \left| \frac{1}{2} + \frac{1}{2} \int_{0}^{\infty} \frac{i}{2} \int_{0}^{\infty} \frac{i}{2} \frac{i}{2} \frac{i}{2} \frac{i}{2} \frac{i}{2} \frac{i}{2} \frac{i}{2} \frac{i}{2} \frac{i}$$

• becomes complicated (red = new terms), but the basic structure is the same

Formula (2/2): for $E_S \not \approx \mathcal{E}_f$

[Huang, <u>HT</u>, (2019)]

$$\frac{d^{3}N_{e}}{dp^{3}} = \frac{V}{(2\pi)^{3}} \exp\left[-\frac{\pi(m^{2}+p_{\perp}^{2})}{eE_{s}}\right]$$

$$\times \left[1 + \int_{0}^{\infty} d\omega e^{-i\frac{\omega p_{\parallel}}{eE_{s}}} \frac{1}{2} \frac{m^{2}+p_{\perp}^{2}}{eE_{s}} \frac{\tilde{\mathcal{E}}_{f}(\omega) \cdot \mathbf{E}_{s}}{E_{s}^{2}} e^{-i\frac{\omega^{2}}{4eE_{s}}} r_{1} \left(1 - \frac{i}{2} \frac{m^{2}+p_{\perp}^{2}}{eE_{s}}; 2; \frac{i}{2} \frac{\omega^{2}}{eE_{s}}\right)\right]$$

$$+ i \int_{0}^{\infty} d\omega e^{-i\frac{\omega p_{\parallel}}{eE_{s}}} \frac{\tilde{\mathcal{E}}_{f}(\omega) \cdot \mathbf{p}_{\perp}}{E_{s}\omega} \operatorname{Re}\left[e^{-i\frac{\omega^{2}}{4eE_{s}}} r_{1} \left(1 - \frac{i}{2} \frac{m^{2}+p_{\perp}^{2}}{eE_{s}}; 1; \frac{i}{2} \frac{\omega^{2}}{eE_{s}}\right)\right]$$

$$+ s \times i \int_{0}^{\infty} d\omega e^{-i\frac{\omega p_{\parallel}}{eE_{s}}} \frac{\tilde{\mathcal{E}}_{f}(\omega) \times \mathbf{p}_{\perp}) \cdot \mathbf{E}_{s}}{E_{s}^{2}\omega} \operatorname{Im}\left[e^{-i\frac{\omega^{2}}{4eE_{s}}} r_{1} \left(1 - \frac{i}{2} \frac{m^{2}+p_{\perp}^{2}}{eE_{s}}; 1; \frac{i}{2} \frac{\omega^{2}}{eE_{s}}\right)\right]^{2}$$

$$+ \left|\int_{0}^{\infty} d\omega e^{-i\frac{\omega p_{\parallel}}{eE_{s}}} \frac{\tilde{\mathcal{E}}_{f}(\omega) + is\tilde{\mathcal{E}}_{f}^{y}(\omega)}{E_{s}} \operatorname{Im}\left[e^{-i\frac{\omega^{2}}{4eE_{s}}} r_{1} \left(1 - \frac{i}{2} \frac{m^{2}+p_{\perp}^{2}}{eE_{s}}; 1; \frac{i}{2} \frac{\omega^{2}}{eE_{s}}\right)\right]^{2}\right|^{2}$$

• becomes complicated (red = new terms), but the basic structure is the same

Formula (2/2): for $E_S \not\in \mathcal{E}_f$

[Huang, <u>HT</u>, (2019)]

• becomes complicated (red = new terms), but the basic structure is the same

Formula (2/2): for $E_S \not \approx \mathcal{E}_f$

[Huang, <u>HT</u>, (2019)]

- becomes complicated (red = new terms), but the basic structure is the same
- spin-dependence appears even without magnetic fields
 - : Dirac particle has a spin-orbit coupling $s \cdot (p \times E)$ [Foldy, Wouthuysen (1950)] [Tani (1951)]

e.g. application to spintronics [Huang, Matsuo, HT (2019)]

INTRODUCTION THEORY RESULTS SUMMARY

Results (1/3): Total prod. # *N* Parallel field configuration: $\mathbf{E} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$

Deculte (1/2) Tetal prod # A/

Franz-Keldysh effect

Apply strong slow E-field and a photon (~ weak fast E-field) onto a semi-conductor, and measure photo-absorption rate

 \Rightarrow photo-aborp. rate \sim Im[1-loop action] \sim particle prod. rate

 $\overline{(e)}$

 1.2×10

 $1. \times 10$

8. × 10

6. × 10

4. × 10

2. × 10

 \Rightarrow looks very similar to the dynamically assisted Schwinger mech.

 $\sqrt{eE_s} = 3.0$ $\sqrt{eE_s} = 4.0$ $\sqrt{eE_s} = 5.0$ $\sqrt{eE_s} = 10.0$ $\sqrt{eE_s} = 25.0$

 $\sqrt{eE_s}$

Results (1/3): Total prod. # N Parallel field configuration: *E* = $E_{\rm s} + \mathcal{E} \cos \Omega t$ N_e difference (■−■) $- m/\sqrt{eE_{\rm s}} = 3.0$ For $m/\sqrt{eE_s} = 2.5$; $\mathcal{E}/E_s = 0.01$ $\overline{(eE_s)^2VT}$ $(N_e - N_e^{(\text{pert})})/(eE_s)^2 VT$ - $m/\sqrt{eE_s} = 4.0$ $- m/\sqrt{eE_{\rm s}} = 5.0$ 2. × 10 1.2 × 10⁻⁶ $- m/\sqrt{eE_{\rm s}} = 10.0$ 1.×10⁻⁶ 10-11 $- m/\sqrt{eE_{\rm s}} = 25.0$ perturbative × 10⁻¹¹ 8. × 10⁻⁷ (prod. w/o E_s) 3. × 10⁻¹¹ 2. × 10⁻¹¹

-2

-1

-1.×10⁻⁷

frequency

 $(\Omega - 2m)/\sqrt{eE_s}$

Completely the same as the Franz-Keldysh effect !

12

frequency $\Omega/\sqrt{eE_s}$

14

1.0 1.5

2.0

- enhancement below the gap [Dunne, Gies, Schutzhold (2008), (2009)]
- oscillation above the gap

6

1. × 10⁻⁻

Schwinger

8

0.0

10

0.5

6. × 10⁻⁷

 $4. \times 10^{-7}$

 $2. \times 10^{-7}$

our formula

 $(prod. w/E_{s})$

Results (1/3): Total prod. # N Parallel field configuration: *E* = $E_{\rm s} + \mathcal{E} \cos \Omega t$ N_e difference (■−■) $- m/\sqrt{eE_s} = 3.0$ For $m/\sqrt{eE_s} = 2.5$; $\mathcal{E}/E_s = 0.01$ $\overline{(eE_s)^2 VT}$ $(N_e - N_e^{(\text{pert})})/(eE_s)^2 VT$ $- m/\sqrt{eE_{\rm s}} = 4.0$ $- m/\sqrt{eE_{\rm s}} = 5.0$ 2. × 10 1.2 × 10⁻⁶ $- m/\sqrt{eE_{\rm s}} = 10.0$ 1.×10⁻⁶ × 10⁻¹¹ $- m/\sqrt{eE_{\rm s}} = 25.0$ perturbative × 10⁻¹¹

Completely the same as the Franz-Keldysh effect !

- enhancement below the gap [Dunne, Gies, Schutzhold (2008), (2009)]
- oscillation above the gap

Franz-Keldysh effect = dyn. ass. Schwinger mech.

Intuitive explanation

- quantum tunneling ⇒ enhancement
- quantum reflection ⇒ oscillation
 - non-uniform prob. dist. due to interference b/w in-coming and reflected waves
 - production occurs most efficiently at the maxima

Results (2/3): Momentum dist. d^3N_e/dp^3

enhancement below gap; oscillation above gap

- ef) effective mass [Kohlfurst, Gies, Alkofer (2014)]
- the pert. peak is slightly above the gap $\Omega = 2\omega_p$ due to reflection
- excellent agreement b/w our analytical formula and the numerics

Results (3/3): Spin-dependence

- Basically the same as the parallel case: enhancement/oscillation below/above gap
- Spin-dependence appears \Rightarrow O(10%) effect \Rightarrow not negligible
 - θ_{p_1} -dependent because of the spin-orbit interaction $s \cdot (p \times \mathcal{E})$

Summary

Problem	Dynamically assisted Schwinger mechanism ⇒ spontaneous particle production from the vacuum by strong slow E-field + weak fast E-field w/ <u>arbitrary</u> time-dep.		
Technical results	Analytical formula for <u>arbitrary</u> time-dep. weak fast E is derived based on pert. theory in Furry picture ⇒ reproduces the numerics so well and has wider applicability compared to conventional methods (e.g. WKB, worldline)		
Physical results	 Dyn. ass. Schwinger mech. = FK effect in cond-mat ⇒ enhancement/oscillation below/above the gap energy Spin-dependence appears ⇒ not negligible ~ O(10%) effect 		
Outlook	 Interact w/ cond-mat Phenomenological applications. (e.g. HIC, laser,) 	cond-mathep = dyn. ass.If effectschingerdynamical FK, exciton effect, modulation spectroscopyworldline method, Furry picture, 2PI, resurgence	

Interplay b/w pert. & non-pert. prod.

[<u>HT</u>, Fujii, Itakura (2014)]

Sauter E-field with lifetime τ & strength E_0 : $E = E_0 / \cosh^2(t/\tau)$

- Analytically solvable [Sauter (1932)]
- 2 dimensionless parameters $\gamma = gE_0\tau/m$, $\nu = gE_0\tau^2$ controls the interplay
 - because there are 3 dimensionfull parameters